Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluation and simulation of wheel steering functionality on a Road to Rig test bench

2024-07-02
2024-01-3000
The automotive industry is continuously evolving, demanding innovative approaches to enhance testing methodologies and preventive identify potential issues. This paper proposes an advancement test approach in the area of the overall vehicle system included steering system and power train on a “Road to Rig” test bench. The research aims to revolutionize the conventional testing process by identifying faults at an early stage and eliminating the need to rely solely on field tests. The motivation behind this research is to optimize the test bench setup and bring it even closer to real field tests. Key highlights of the publication include the introduction of an expanded load spectrum, incorporating both steering angle and speed parameters along the test track. The load includes different route and driving profiles like on a freeway, overland and city drive in combination with the steering angles.
Technical Paper

Experimental Study of Lignin Fuels for CI Engines

2024-06-12
2024-37-0022
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs.
Technical Paper

Guided Port Injection of Hydrogen as An Approach for Reducing Cylinder-To-Cylinder Deviations in Spark-Ignited H2 Engines – A Numerical Investigation

2024-06-12
2024-37-0008
The reduction of anthropogenic greenhouse gas emissions and ever stricter regulations on pollutant emissions in the transport sector require research and development of new, climate-friendly propulsion concepts. The use of renewable hydrogen as a fuel for internal combustion engines promises to provide a good solution especially for commercial vehicles. For optimum efficiency of the combustion process, hydrogen-specific engine components are required, which need to be tested on the test bench and analysed in simulation studies. This paper deals with the simulation-based investigation and optimisation of fuel injection in a 6-cylinder PFI commercial vehicle engine, which has been modified for hydrogen operation starting from a natural gas engine concept.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

Assessment of Condensation Particle Counter-Based Portable Solid Particle Number System for Applications with High Water Content in Exhaust

2024-04-22
2024-01-5048
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel.
Technical Paper

Combustion Timing Control Based on First Modal Coefficients of Individual Cylinder Pressure Traces

2024-04-09
2024-01-2842
When an SI engine is equipped with individual cylinder pressure transducers, combustion timing of each cylinder can be precisely controlled by adjusting spark timing in real-time. In this paper, a novel method based on principal component analysis (PCA) is introduced to control the combustion timing with a significantly less computational burden than a conventional method.
Technical Paper

Improving the Performance of Diesel Engines by Bore Profile Control under Operating Conditions

2024-04-09
2024-01-2832
The cylinder bore in an engine block is deformed under the assembling stress of the cylinder head and thermal stress. This distortion exacerbates the piston skirt friction and piston slap. Through a numerical and experimental study, this article analyzes the effect of an optimized bore profile on the engine performance. The piston skirt friction was estimated in a three-dimensional elastohydrodynamic (EHD) friction analysis. An ideal cylindrical bore under the rated load condition was assumed as the optimal bore profile that minimized the piston skirt friction without compromising the piston slap. The simulation study revealed that secondary motion of the piston immediately after firing the top dead center can be mitigated by narrowing the piston–bore clearance at the upper position of the cylinder.
Technical Paper

Study on the Optimization of Sealing Environment of Cylinder Head Gasket

2024-04-09
2024-01-2833
Typically, modern automotive engine designs include separate cylinder heads and cylinder blocks and utilize a multilayer steel head gasket (MLS) to seal the resulting joint. Cylinder head bolts are used to hold the joint together and the non-linear properties of head gasket provide capability to seal the movement within the joint, which is essential for engine durability and performance. The current design of cylinder head gasket mainly evaluates the sealing performance in hot and cold state through finite element analysis. The sealing performance of cylinder head gasket is mainly determined by sealing pressure, fatigue and lateral movement in the joint, which have been widely studied [1]. However, no one has been involved in the study of factors affecting sealing pressure and lateral movement in the joint.
Technical Paper

Evaluating Vehicle Response Through Non-Traditional Pedestrian Automatic Emergency Braking Scenarios

2024-04-09
2024-01-1975
Pedestrian Automatic Emergency Braking (P-AEB) is a technology designed to avoid or reduce the severity of vehicle to pedestrian collisions. This technology is currently assessed and evaluated via EuroNCAP and similar procedures in which a pedestrian test target is crossing the road, walking alongside the road, or stationary in the forward vehicle travel path. While these assessment methods serve the purpose of providing cross-comparison of technology performance in a standardized set of scenarios, there are many scenarios which could occur which are not considered or studied. By identifying and performing non-EuroNCAP, non-standardized scenarios using similar methodology, the robustness of P-AEB systems can be analyzed. These scenarios help identify areas of further development and consideration for future testing programs. Three scenarios were considered as a part of this work: straight line approach, curved path approach, and parking lot testing.
Technical Paper

Closed Track Testing To Assess Prototype Level-3 Autonomous Vehicle Readiness for Public Road Deployment

2024-04-09
2024-01-1976
Most of the Automated Driving Systems (ADS) technology development is targeting urban areas; there is still much to learn about how ADS will impact rural transportation. The DriveOhio team deployed level-3 ADS-equipped prototype vehicles in rural Ohio with the goal of discovering technical challenges for ADS deployment in such environments. However, before the deployment on public roads, it was essential to test the ADS-equipped vehicle for their safety limitations. At Transportation Research Center Inc. (TRC Inc.) proving grounds, we tested one such prototype system on a closed test track with soft targets and robotic platforms as surrogates for other road users. This paper presents an approach to safely conduct testing for ADS prototype and assess its readiness for public road deployment. The main goal of this testing was to identify a safe Operational Design Domain (ODD) of this system by gaining better understanding of the limitations of the system.
Technical Paper

A Novel Torque Distribution Approach of Four-Wheel Independent-Drive Electric Vehicles for Improving Handling and Energy Efficiency

2024-04-09
2024-01-2315
This paper presents a torque distribution strategy for four-wheel independent drive electric vehicles (4WIDEVs) to achieve both handling stability and energy efficiency. The strategy is based on the dynamic adjustment of two optimization objectives. Firstly, a 2DOF vehicle model is employed to define the stability control objective for Direct Yaw moment Control (DYC). The upper-layer controller, designed using Linear Quadratic Regulator (LQR), is responsible for tracking the target yaw rate and target sideslip angle. Secondly, the lower-layer torque distribution strategy is established by optimizing the tire load rate and motor energy consumption for dynamic adjustment. To regulate the weights of the optimization targets, stability and energy efficiency allocation coefficient is introduced. Simulation results of double lane change and split μ road conditions are used to demonstrate the effectiveness of the proposed DYC controller.
Technical Paper

Optical diagnostic study on ammonia-diesel and ammonia-PODE dual fuel engines

2024-04-09
2024-01-2362
Ammonia shows promise as an alternative fuel for internal combustion engines (ICEs) in reducing CO2 emissions due to its carbon-free nature and well-established infrastructure. However, certain drawbacks, such as the high ignition energy, the narrow flammability range, and the extremely low laminar flame speed, limit its widespread application. The dual fuel (DF) mode is an appealing approach to enhance ammonia combustion. The combustion characteristics of ammonia-diesel dual fuel mode and ammonia-PODE3 dual fuel mode were experimentally studied using a full-view optical engine and the high-speed photography method. The ammonia energy ratio (ERa) was varied from 40% to 60%, and the main injection energy ratio (ERInj1) and the main injection time (SOI1) were also varied in ammonia-PODE3 mode.
Technical Paper

Experimental Study on Engine Performance Fueled with Ammonia-Hydrogen Blend Ignited by Diesel Pilot

2024-04-09
2024-01-2365
The global energy crisis and drastic climate change are continuously promoting the implementation of sustainable energy sources. To meet the emission standards and carbon-neutrality targets in vehicle industry, ammonia is considered to be one of the promising carbon-neutral fuels. However, running the engines on high amounts of ammonia may lead to significantly high ammonia slip. This originates huge safety concerns. Therefore, hydrogen is added in certain ratio with ammonia to promote combustion and reduce ammonia slip. Furthermore, adding diesel as a pilot fuel further facilitates the combustion reactions. This experimental study investigated the effect of different ammonia-hydrogen blend ratios on in-cylinder pressure, heat release rate, cumulative heat release, indicated mean effective pressure (IMEP), indicated thermal efficiency (ITE), CA5 and CA50. This effect of blend ratios was tested for varied diesel pilot amounts and timings.
Technical Paper

Validation of a Two-Parameter Controlled Novel Tribometer for Analysing Durability of Piston Ring-Engine Cylinder Tribo-Pair

2024-04-09
2024-01-2067
The wear of the piston ring-cylinder liner system in gasoline engines is inevitable and significantly impacts fuel economy. Utilizing a custom-built linear reciprocating tribometer, this study assesses the wear resistance of newly developed engine cylinder coatings. The custom device offers a cost-effective means for tribological evaluation, optimizing coating process parameters with precise control over critical operational factors such as normal load and sliding frequency. Unlike conventional commercial tribometers, it ensures a more accurate simulation of the engine cylinder system. However, existing research lacks a comprehensive comparative analysis and procedure to establish precision limits for such modified devices. This study evaluates the custom tribometer's repeatability compared to a commercial wear-testing instrument, confirming its potential as a valuable tool for advanced wear testing on engine cylinder samples.
Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

Combustion and Emission Characteristics of an Ammonia-Hydrogen Engine under Passive- and Active-Jet Ignition

2024-04-09
2024-01-2109
In the context of carbon neutrality, ammonia is considered a zero-carbon fuel with potential applications in the transportation sector. However, its high ignition energy, low flame speed, and high natural temperature, indicative of low reactivity, make it challenging to be applied as a sole fuel in engines. In such a scenario, the use of another zero-carbon and highly reactive fuel, hydrogen, becomes necessary to enhance the combustion of ammonia. Furthermore, jet ignition, a method known for improving engine combustion performance, may also hold potential for enhancing the combustion performance of ammonia engines. To explore the applicability of jet ignition in engines, this study conducted experimental research on a single-cylinder engine. Two ignition methods were employed: passive jet ignition of premixed ammonia-hydrogen at a compression ratio of 11.5, and active jet ignition of pure ammonia using hydrogen jet flame at a compression ratio of 17.3.
Technical Paper

Low-Cost Open-Source Data Acquisition for High-Speed Cylinder Pressure Measurement with Arduino

2024-04-09
2024-01-2390
In-cylinder pressure measurement is an important tool in internal combustion engine research and development for combustion, cycle performance, and knock analysis in spark-ignition engines. In a typical laboratory setup, a sub crank angle resolved (typically between 0.1o and 0.5o) optical encoder is installed on the engine crankshaft, and a piezoelectric pressure transducer is installed in the engine cylinder. The charge signal produced by the transducer due to changes in cylinder pressure during the engine cycle is converted to voltage by a charge amplifier, and this analog voltage is read by a high-speed data acquisition (DAQ) system at each encoder trigger pulse. The high speed of engine operation and the need to collect hundreds of engine cycles for appropriate cycle-averaging requires significant processor speed and memory, making typical data acquisition systems very expensive.
Technical Paper

Thermal Management System Test Bench for Electric Vehicle Technology

2024-04-09
2024-01-2407
The importance of designing and sizing a thermal management system for electric vehicle powertrains cannot be overstated. Traditional approaches often rely on model-based system design using supplier reference component data, which can inadvertently lead to undisclosed errors arising from the interactions between the components and the environment. This paper introduces a novel test facility for battery electric vehicle thermal management technology, which has been designed for neural network virtual sensor and non-linear multi-in multi-out control development. The paper demonstrates how a digital twin of the test bench can used to support the development of such technology. Additionally, this paper presents preliminary results from the test bench revealing insights into the performance and interactions of key components. For instance, there is an observed 30% reduction in the maximum flow rate of the pump integrated into the test bench compared to the specified value.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

Evaluating the Effects of an Electrically Assisted Turbocharger on Scavenging Control for an Opposed Piston Two Stroke (OP2S) Compression Ignition Engine

2024-04-09
2024-01-2388
Opposed piston two-stroke (OP2S) diesel engines have demonstrated a reduction in engine-out emissions and increased efficiency compared to conventional four-stroke diesel engines. Due to the higher stroke-to-bore ratio and the absence of a cylinder head, the heat transfer loss to the coolant is lower near ‘Top Dead Center.’ The selection and design of the air path is critical to realizing the benefits of the OP2S engine architecture. Like any two-stroke diesel engine, the scavenging process and the composition of the internal residuals are predominantly governed by the pressure differential between the intake and the exhaust ports. Without dedicated pumping strokes, the two-stroke engine architecture requires external devices to breathe.
X