Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Cyber Security Approval Criteria: Application of UN R155

2024-07-02
2024-01-2983
The UN R155 regulation is the first automotive cyber security regulation and has made security a mandatory approval criterion for new vehicle types. This establishes internationally harmonized security requirements for market approval. As a result, the application of the regulation presents manufacturers and suppliers with the challenge of demonstrating compliance. At process level the implementation of a Cyber Security Management System (CSMS) is required while at product level, the Threat Assessment and Risk Analysis (TARA) forms the basis to identify relevant threats and corresponding mitigation strategies. Overall, an issued type approval is internationally recognized by the member states of the UN 1958 Agreement. International recognition implies that uniform assessment criteria are applied to demonstrate compliance and to decide whether security efforts are sufficient.
Technical Paper

Enhancing Urban AEB Systems: Simulation-Based Analysis of Error Tolerance in Distance Estimation and Road-Tire Friction Coefficients

2024-07-02
2024-01-2992
Autonomous Emergency Braking (AEB) systems are critical in preventing collisions, yet their effectiveness hinges on accurately estimating the distance between the vehicle and other road users, as well as understanding road conditions. Errors in distance estimation can result in premature or delayed braking and varying road conditions alter road-tire friction coefficients, affecting braking distances. Advancements in sensor technology and deep learning have improved vehicle perception and real-world understanding. The integration of advanced sensors like LiDARs has significantly enhanced distance estimation. Cameras and deep neural networks are also employed to estimate the road conditions. However, AEB systems face notable challenges in urban environments, influenced by complex scenarios and adverse weather conditions such as rain and fog. Therefore, investigating the error tolerance of these estimations is essential for the performance of AEB systems.
Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
Technical Paper

FMCW Lidar Simulation with Ray Tracing and Standardized Interfaces

2024-07-02
2024-01-2977
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment.
Technical Paper

A Novel Approach for the Safety Validation of Emergency Intervention Functions using Extreme Value Estimation

2024-07-02
2024-01-2993
As part of the safety validation of advanced driver assistance systems (ADAS) and automated driving (AD) functions, it is necessary to demonstrate that the frequency at which the system exhibits hazardous behavior (HB) in the field is below an acceptable threshold. This is typically tested by observation of the system behavior in a field operational test (FOT). For situations in which the system under test (SUT) actively intervenes in the dynamic driving behavior of the vehicle, it is assessed whether the SUT exhibits HB. Since the accepted threshold values are generally small, the amount of data required for this strategy is usually very large. This publication proposes an approach to reduce the amount of data required for the evaluation of emergency intervention systems with a state machine based intervention logic by including the time periods between intervention events in the validation process.
Technical Paper

Harmonic injection method for NVH optimization of permanent magnet synchronous motors considering the structural characteristics of the machine

2024-07-02
2024-01-3015
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspect of electric motors. Among the different causes of the NVH issues of electrical drives, the high-frequency spatial and temporal harmonics of the electrical drive system is of great importance. To reduce the tonal noise of the electric motors, harmonic injection methods can be applied. However, a lot of the existing related work focuses more on improving the optimization process of the parameter settings of the injected current/flux/voltage, which are usually limited to some specific working conditions. The applicability and effectivity of the algorithm to the whole frequency/speed range are not investigated. In this paper, a multi-domain pipeline of harmonic injection controller design for a permanent magnet synchronous motor (PMSM) is proposed.
Technical Paper

Radar-based Approach for Side-Slip Gradient Estimation

2024-07-02
2024-01-2976
In vehicle ego-motion estimation, vehicle control, and advanced driver assist systems the vehicle dynamics are described by a few key parameters. The side-slip gradient, being one of them, is used to model the lateral behavior of the vehicle. This parameter is rarely known precisely, since it depends on the vehicle’s mass distribution, its tires, and even the chassis setup. Thus, an online-estimation of the side-slip gradient is beneficial, especially in serial applications. Estimating the side-slip gradient with conventional vehicle sensors such as wheel-speed, steering, and inertial sensors poses a significant challenge since considerable dynamic excitation of the vehicle is required, which is uncommon in normal driving. Here, radar sensors open new opportunities in the estimation of such vehicle dynamics parameters since they allow for an instantaneous measurement of the lateral velocity.
Technical Paper

Towards a New Approach for Reducing the Safety Validation Effort of Driving Functions Using Prediction Divergence

2024-07-02
2024-01-3003
An essential component in the approval of advanced driver assistance systems (ADAS) and automated driving systems (ADS) is the quantification of residual risk, which demonstrates that hazardous behavior (HB) occurs less frequently than specified by a corresponding acceptance criterion. In the case of HB with high potential impact severity, only very low accepted frequencies of occurrence are tolerated. To avoid uncertainties due to abstractions and simplifications in simulations, the proof of the residual risk in systems such as advanced emergency braking systems (AEBS) is often partially or entirely implemented as system-level field test. However, the low rates and high confidence required, common for residual risk demonstrations, result in a significant disadvantage of these field tests: the long driving distance required.
Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
Technical Paper

Investigation of Stator Cooling Concepts of an Electric Machine for Maximization of Continuous Power

2024-07-02
2024-01-3014
With the automotive industry's increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today's development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts.
Technical Paper

Efficient engine encapsulation strategy using poroelastic finite element simulation

2024-06-12
2024-01-2957
With the increasing importance of electrified powertrains, electric motors and gear boxes become an important NVH source especially regarding whining noises in the high frequency range. Engine encapsulation noise treatments become often necessary and present some implementation, modeling as well as optimization issues due to complex environments with contact uncertainties, pass-throughs and critical uncovered areas. Relying purely on mass spring systems is often a too massive and relatively unefficient solution whenever the uncovered areas are dominant. Coverage is key and often a combination of hybrid backfoamed porous stiff shells with integral foams for highly complex shapes offer an optimized trade-off between acoustic performance, weight and costs.
Technical Paper

Estimating a Viscous Damping Model for a Vibrating Panel in contact with an Acoustic Trim Enhanced with Particle Dampers.

2024-06-12
2024-01-2917
Dampers (PDs) are passive devices employed in vibration and noise control applications. They consist of a cavity filled with particles that, when fixed to a vibrating structure, dissipate vibrational energy through friction and collisions among the particles. These devices have been extensively documented in the literature and find widespread use in reducing vibrations in structural machinery components subjected to significant dynamic loads during operation. However, their application in reducing vehicle interior sound has received, up to now, relatively little attention. Previous work by the authors has proven the effectiveness of particle dampers in mitigating vibrations in vehicle body panels, achieving a notable reduction in structure-borne noise within the vehicle cabin with an additional weight comparable to or even lower than that of bituminous damping treatments traditionally used for this purpose.
Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
Technical Paper

High-Speed Acoustic Imaging for the Localisation of Impulse-like Sound Emissions from Automotive Components

2024-06-12
2024-01-2959
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras.
Technical Paper

Harmonizing Safety Regulations and Perception: A Simulation Methodology for AVAS System Design

2024-06-12
2024-01-2915
The development of an effective Acoustic Vehicle Alert System (AVAS) is not solely about adhering to safety regulations; it also involves crafting an auditory experience that aligns with the expectations of vulnerable road users. To achieve this, a deep understanding of the acoustic transfer function is essential, as it defines the relationship between the sound emitter (the speaker inside the vehicle) and the receiver (the vulnerable road user). Maintaining the constancy of this acoustic transfer function is paramount, as it ensures that the sound emitted by the vehicle aligns with the intended safety cues and brand identity that is defined by the car manufacturer. In this research paper, three distinct methodologies for calculating the acoustic transfer function are presented: the classical Boundary Element method, the H-Matrix BEM accelerated method, and the Ray tracing method.
Technical Paper

Synergizing Efficiency and Silence: A Novel Approach to E-Machine Development

2024-06-12
2024-01-2914
Traditionally, Electric Machine design has primarily focused on factors like efficiency, packaging, and cost, often neglecting the critical aspects of Noise, Vibration, and Harshness (NVH) in the early decision-making stages. This disconnect between E-Machine design teams and NVH teams has consistently posed a challenge. This paper introduces an innovative workflow that unifies these previously separate domains, facilitating comprehensive optimization by seamlessly integrating NVH considerations with other E-Machine objectives, such as electromagnetic compatibility (EMC). This paper highlights AVL's approach in achieving this transformation and demonstrates how this integrated approach sets a new standard for E-Machine design. The presented approach relies on AI-driven algorithms and computational tools.
Technical Paper

Simulation and test methods on NVH performance of axle system

2024-06-12
2024-01-2950
For electric vehicles, road noise, together with wind noise, is the most important contributor for vehicle interior noise. Road noise is very dependent on the NVH behavior of axle system including wheels and tires. Axle system is part of vehicle platform which should be compatible with different body variants. Therefore, il is important to characterize the NVH performance of an axle system independently of car body structure, so that the design the axle can be optimized at the early stage according to the global requirements of all the related vehicles. The best way to characterize the NVH performance of an axle system is to measure the blocked forces on an appropriate test rig. However, the measurement of blocked forces from an axle system requires very stiff boundary conditions which is difficult to achieve in practice. For axles with rigid mountings, it is nearly impossible to measure the blocked forces on test rig.
Technical Paper

Acoustic VS reliability. Case study of automotive components undergoing vibration endurance tests

2024-06-12
2024-01-2948
During design development phases, automotive components undergo a strict validation process aiming to demonstrate requested levels of performance and durability. In some cases, specific developments encounter a major blocking point : decoupling systems responsible for optimal acoustic performances. On the one hand, damping rubbers need to be soft to comply with noise, vibration & harshness criteria. However, softness would provoke such high amplitudes during vibration endurance tests that components would suffer from failures. On the other hand, stiffer rubbers, designed for durability purposes, would fail to meet noise compliance. The rubber design development goes through a double-faced dilemma : design with acceptable trade-off between NVH and durability, and efficient ways to develop compliant designs. This paper illustrates two case studies where different methodologies are applied to validate decoupling systems from both acoustic and reliability perspectives.
Technical Paper

Application of a Seat Transmissibility Approach to Experience Measured or Predicted Seat-rail Vibration in a Multi-Attribute Simulator

2024-06-12
2024-01-2962
Computer modelling, virtual prototyping and simulation is widely used in the automotive industry to optimize the development process. While the use of CAE is widespread, on its own it lacks the ability to provide observable acoustics or tactile vibrations for decision makers to assess, and hence optimize the customer experience. Subjective assessment using Driver-in-Loop simulators to experience data has been shown to improve the quality of vehicles and reduce development time and uncertainty. Efficient development processes require a seamless interface from detailed CAE simulation to subjective evaluations suitable for high level decision makers. In the context of perceived vehicle vibration, the need for a bridge between complex CAE data and realistic subjective evaluation of tactile response is most compelling. A suite of VI-grade noise and vibration simulators have been developed to meet this challenge.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
X