Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Investigation of Stator Cooling Concepts of an Electric Machine for Maximization of Continuous Power

2024-07-02
2024-01-3014
With the automotive industry's increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today's development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts.
Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Technical Paper

The influence of design operating conditions on engine coolant pump absorption in real driving scenarios.

2024-06-12
2024-37-0015
Reducing CO2 emissions in on-the-road transport is important to limit global warming and follow a green transition towards net zero Carbon by 2050. In a long-term scenario, electrification will be the future of transportation. However, in the mid-term, the priority should be given more strongly to other technological alternatives (e.g., decarbonization of the electrical energy and battery recharging time). In the short- to mid-term, the technological and environmental reinforcement of ICEs could participate in the effort of decarbonization, also matching the need to reduce harmful pollutant emissions, mainly during traveling in urban areas. Engine thermal management represents a viable solution considering its potential benefits and limited implementation costs compared to other technologies. A variable flow coolant pump actuated independently from the crankshaft represents the critical component of a thermal management system.
Technical Paper

Experimental and Simulation Study of Zero Flow Impact on Hybrid Vehicle Emissions

2024-06-12
2024-37-0036
Combustion engines in hybrid vehicles turn on and off several times during a typical passenger car trip. Each engine restart may pose a risk of excessive tailpipe emissions in real-drive conditions if the after-treatment system fails to maintain an adequate temperature level during zero flow. In view of the tightening worldwide tailpipe emissions standards and real-world conformity requirements, it is important to detect and resolve such risks via cost-effective engineering tools relying on accurate 3d analysis of the thermal and chemical behavior of exhaust systems. In this work, we present a series of experiments to examine the impact of zero-flow duration on the exhaust system cooling and subsequent emissions risk. We also present a catalyst model calibrated to predict the 3d thermal and chemical behavior under normal and zero flow conditions. Particular emphasis is given to the phenomena of free convection and thermal radiation dominating the heat transfer at zero flow.
Technical Paper

Comparison of Performance and Efficiency of different Refrigerants at high load Conditions and their Impact on CO2eq Emissions

2024-06-12
2024-37-0029
For battery-electric vehicles (BEVs), the climate control and the driving range are crucial criteria in the ongoing electrification of automobiles in Europe towards the targeted carbon neutrality of the automotive industry. The thermal management system makes an important contribution to the energy efficiency and the cabin comfort of the vehicle. In addition to the system architecture, the refrigerant is crucial to achieve high cooling and heating performance while maintaining high efficiency and thus low energy consumption. Due to the high efficiency requirements for the vehicle, future system architectures will largely be heat pump systems. The alternative refrigerant R-474A based on the molecule R-1132(E) achieved top performance for both parameters in various system and vehicle tests.
Technical Paper

R290 HP-Module for Electric Vehicles

2024-06-12
2024-37-0031
In contrast to refrigeration circuits in internal combustion engine vehicles (ICEVs) mainly used for cabin cooling, in electric vehicles (EVs) additional functions need to be taken into consideration, e.g., cabin heating, which in ICEVs is realized by the combustion engine’s waste heat, conditioning of the electric battery and drive train components. Additionally, each of these functions demands a different temperature level. Therefore, requirements towards the thermal management in EVs are more challenging. In modern EVs most of these functions are realized by direct refrigerant circuits, which are optimal in terms of efficiency and response time, however, result in greater complexity and different architectures for almost every vehicle model. In addition, the vast majority of EVs worldwide use chemical refrigerants that contain PFAS, e.g. R1234yf, which are known to be persistent and harmful for human health and environment.
Technical Paper

A methodology to develop and validate a 75-kWh battery pack model with its cooling system under a real driving cycle.

2024-06-12
2024-37-0012
A major issue of battery electric vehicles (BEV) is optimizing driving range and energy consumption. Under actual driving, transient thermal and electrical performance changes could deteriorate the battery cells and pack. These performances can be investigated and controlled efficiently with a thermal management system (TMS) via model-based development. A complete battery pack contains multiple cells, bricks, and modules with numerous coolant pipes and flow channels. However, such an early modeling stage requires detailed cell geometry and specifications to estimate the thermal and electrochemical energies of the cell, module, and pack. To capture the dynamic performance changes of the LIB pack under real driving cycles, the thermal energy flow between the pack and its TMS must be well predicted. This study presents a BTMS model development and validation method for a 75-kWh battery pack used in mass-production, mid-size battery SUV under WLTC.
Technical Paper

A Comparative Analysis of Thermal Runaway Propagation in Different Modular Lithium-Ion Battery Configuration

2024-05-06
2024-01-2901
Thermal runaway is a critical safety concern in lithium-ion battery systems, emphasising the necessity to comprehend its behaviour in various modular setups. This research compares thermal runaway propagation in different modular configurations of lithium-ion batteries by analysing parameters such as cell spacing and distribution, application of phase change materials (PCMs), and implementing insulating materials. The study at the module level includes experimental validation and employs a comprehensive model considering heat transfer due to electrical performance and thermal runaway phenomena. It aims to identify the most effective modular configuration for mitigating thermal runaway risks and enhancing battery safety. The findings provide valuable insights into the design and operation of modular lithium-ion battery systems, guiding engineers and researchers in implementing best practices to improve safety and performance across various applications.
Technical Paper

Cool System, Lasting Power - an Outstanding E-Powertrain Meets MX Dirt Track

2024-04-09
2024-01-2165
The powertrain electrification is currently not only taking place in public road mobility vehicles, but is also making its way to the racetrack, where it’s driving innovation for developments that will later be used in series production vehicles. The current development focus for electric vehicles is the balance between driving power, range and weight, which is given even greater weighting in racing. To redefine the current limits, IAV developed a complete e-powertrain for a racing MX motorcycle and integrated it into a real drivable demonstrator bike. The unique selling point is the innovative direct phase-change cooling (PCC) of the three-phase e-motor and its power electronics, which enables significantly increased continuous power (Pe = 40 kW from 7,000 rpm to 9,000 rpm) without thermal power reduction. The drive unit is powered by a replaceable Lithium-Ion round cell battery (Ubat,max = 370V) with an energy storage capacity of Ebat = 5 kWh.
Technical Paper

Performance Comparison between Different Battery Architectures with Cell-to-Cell Variations

2024-04-09
2024-01-2195
A 300 mile-range automotive battery pack is comprised of many individual cells connected in series/parallel to make up the required voltage, energy, and power. The cell groupings can take the form of parallel strings of series cell groups (S-P), series string of parallel cell groups (P-S), or a hybrid of the two. Though the different battery configurations deliver identical output voltage and energy, they exhibit varying cell level behaviors due to differing electrical structure, particularly when cell imbalance occurs. In this work, we explore the relative merits of various cell grouping configurations using a model-based approach. The emphasis of the study is to evaluate the impact of electrical variation between cell-to-cell, originating from cell manufacturing process variation, battery assembly (laser tab bonding) process variation or from normal operation, on the performance of the battery pack. A first-order equivalent circuit model is used to represent a lithium-ion cell.
Technical Paper

Development and optimization of jet impingement on dimpled plate for maximizing cooling performance of an inverter

2024-04-09
2024-01-2216
A need to develop a cooling method with high cooling performance like jet impingement is increased as high power of an inverter is required. Jet Impingement on the dimpled plate would increase thermal performance than that of flat plate. Many previous researchers have dealt with the multi jet impingement on flat plate and some results of the study on dimpled plate evaluate the effect on heat transfer coefficients on several limited cases, making it difficult to apply them to inverter designs. Therefore, in this paper, heat transfer performance, pressure drop, and robustness at micro-scale of jet impingement on the dimpled plate were investigated in detail and the correlations of each performance were proposed. Finally, the optimal design was presented. The cooling performance was influenced by the jet array and the effect of depth and width of the dimples.
Technical Paper

XiLS (X in the Loop Simulation) Based Thermal Management Development

2024-04-09
2024-01-2272
The significance of thermal management performance in electric vehicles (EVs) has grown considerably, leading to increased complexity in thermal systems and a rapid rise in safety and quality-related concerns. The present real-vehicle-based development methods encounter several constraints in their approach when dealing with highly complex systems. Huge number of verification and validation work To overcome these limitations and enhance the thermal system development process, a novel virtual development environment established using the XiLS (X in the Loop Simulation) methodology. This XiLS methodology basically based on real-time coupling between physical thermal system hardware and analytical models for the other systems of vehicle. To control vehicle model and thermal system, various options were realized through hardware, software and model for VCU (Vehicle control unit) and TMS (Thermal management system) control unit.
Technical Paper

Comparison of Neural Network Topologies for Sensor Virtualisation in BEV Thermal Management

2024-04-09
2024-01-2005
Energy management of battery electric vehicle (BEV) is a very important and complex multi-system optimisation problem. The thermal energy management of a BEV plays a crucial role in consistent efficiency and performance of vehicle in all weather conditions. But in order to manage the thermal management, it requires a significant number of temperature sensors throughout the car including high voltage batteries, thus increasing the cost, complexity and weight of the car. Virtual sensors can replace physical sensors with a data-driven, physical relation-driven or machine learning-based prediction approach. This paper presents a framework for the development of a neural network virtual sensor using a thermal system hardware-in-the-loop test rig as the target system. The various neural network topologies, including RNN, LSTM, GRU, and CNN, are evaluated to determine the most effective approach.
Technical Paper

Development of the New V6 Twin-Turbocharged Engine for Flagship SUV

2024-04-09
2024-01-2095
As part of Nissan’s strategy of electrification and the shift to smart technologies, our powertrain department has two main pillars: zero emissions and ICE Evolution. As a core unit of ICE Evolution, we have developed a brand new 3.5L V6 Twin turbocharged gasoline engine for Nissan’s next generation full-size flagship SUV to deliver luxury and toughness at the highest level. This brand-new engine will be applied to vehicles in all corners of the world and must have strong performance in every corner. More specifically, it has to meet the latest emissions and fuel efficiency regulations, have strong power performance beyond expectation, and provide reliable drivability on rough roads and deserts. To achieve these requirements, the new engine is incorporating many cutting-edge technologies.
Technical Paper

CFD Methodology for Torque Converter Clutch Slipping Modeling

2024-04-09
2024-01-2150
In torque converters, a lockup clutch is used for direct torque transfer from the engine to the gearbox. Nowadays, earlier lockup engagement is necessary to reduce fuel consumption. It introduces noise and vibration issues in the transmission that are solved by clutch slipping. However, the clutch experiences much heat because of earlier engagement, which needs to be adequately dissipated by ATF oil. To overcome this issue, multi-plate clutches are commonly used for efficient torque transfer and clutch slipping. On the other side, packaging space for torque converters is reducing at the vehicle level, especially in hybrid vehicles, which reduces the efficient cooling of clutches. So, accurate modeling of clutch slipping is necessary to improve the clutch performance and durability of the product. Clutch slipping is a transient phenomenon that involves conjugate heat transfer and rotational flow modeling. There are different ways to model clutch slipping in CFD simulations.
Technical Paper

Verification Method to Optimize Multiple Engine Functions in a Short Time Using Multi-Objective Design Exploration

2024-04-09
2024-01-2601
Model-based Development (MBD) has been employed for engine development to reconcile the contradictory relationship between numerous functions and systems at a high level and in a short span of time. However, in actuality, as engines have become more advanced, it has become challenging to even satisfy the requirements of individual components. Moreover, reconciling multiple contradictory functions like engine power and strength and durability performance, as well as coordinating many related systems, requires an even higher level of skill. Such harmonization techniques require total optimization studies that cover a wide range of designs, and which requires several years of examination with current development processes. Multi-objective Design Exploration (MODE) methods [1] using parametric models [2] and surrogate models [3] are being used to shorten the development period and achieve more balanced designs.
Technical Paper

Analysis of Thermal Stress on Silicon Nitride Surface Caused by Drop-Wall Interaction at Engine Conditions

2024-04-09
2024-01-2584
The phenomenon of drop-wall interaction plays a crucial role in a wide range of industrial applications. When liquid droplets come into contact with a high-temperature surface, it can lead to thermal shock due to rapid temperature fluctuations. This abrupt temperature change can generate thermal stress within the solid wall material. If the thermal stress exceeds the material's strength in that specific stress mode, it can result in material failure. Therefore, it is imperative to delve into the evolving temperature patterns on high-temperature surfaces to optimize material durability. This study focuses on investigating drop-wall interactions within the context of engine environments. To achieve this, the Smoothed Particle Hydrodynamics (SPH) method is employed to simulate the impact of fuel droplets on a silicon nitride wall. The goal is to understand the heat transfer mechanisms, thermal penetration depths, and temperature distributions within the heated wall.
Technical Paper

Research on Thermal Control of High Voltage Electronic Control System in Dual Hybrid Vehicles

2024-04-09
2024-01-2400
The hybrid system's thermal strategy is centered around controlling the cooling of the motor, inverter, DCDC and evaporator. In this electric drive circuit system, the water temperature sensor is positioned at the radiator outlet rather than within it. Consequently, when determining the required air volume for radiator cooling and water demand for sub-components of the electric drive circuit, an estimation of the inlet water temperature becomes necessary. This estimation relies on a heat transfer formula that converts heat released by circuit sub-components into their contribution to temperature rise within the circuit plus the outlet temperature from the previous round through the radiator to determine inlet water temperature. The inverter's heat transfer power depends on voltage and current levels. Adjusting motor torque leads to rapid changes in current flow while maintaining a low speed for optimal flow rate through the electric drive pump.
Technical Paper

Inverter Thermal Dimensioning for Electrical Driven Compressor

2024-04-09
2024-01-2413
The inverter of the electrical driven compressor (EDC) is subjected to high thermal loads which are resulting from external temperature exposure and from compressor solicitations from the vehicle thermal loop (refrigerant nature, flow rate, compression rate, initial temperature). An incorrect thermal management of the inverter might lead to a significant decrease of efficiency which degrades the performance, product lifetime (electronics components failure) and even worse, might lead to a hazardous thermal event (HTE). The need of the automotive market to drastically decrease project development time, requires decreasing design and simulation activities lead time without degrading the design robustness, which is one additional complexity and challenge for the R&D team.
Technical Paper

Research on the Flow and Heat Exchange Performance of the Chiller for Electric Vehicles

2024-04-09
2024-01-2412
A set of enthalpy difference test equipment is set up to test flow and heat exchange performance of chillers. The empirical correlations for the convective heat transfer coefficients on the coolant side and the refrigerant side are obtained by fitting the test data, and a two-particle lumped parameter model of the chiller is established. Based on this, the heat exchange performance of the chiller under different operating conditions is given. The effects of herringbone corrugated plate parameters, including angle, pitch, and depth, on flow and heat exchange performance of chillers under different flow rates are further studied. Using the Wilson plot method in test design, the thermal resistance of convective heat transfer on each side is separated from the total thermal resistance to calculate the convective heat transfer coefficient.
X