Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Efficient engine encapsulation strategy using poroelastic finite element simulation

2024-06-12
2024-01-2957
With the increasing importance of electrified powertrains, electric motors and gear boxes become an important NVH source especially regarding whining noises in the high frequency range. Engine encapsulation noise treatments become often necessary and present some implementation, modeling as well as optimization issues due to complex environments with contact uncertainties, pass-throughs and critical uncovered areas. Relying purely on mass spring systems is often a too massive and relatively unefficient solution whenever the uncovered areas are dominant. Coverage is key and often a combination of hybrid backfoamed porous stiff shells with integral foams for highly complex shapes offer an optimized trade-off between acoustic performance, weight and costs.
Technical Paper

Meta Design: Next Level of Acoustic Insulation in Automotive Industry

2024-06-12
2024-01-2934
Meta material has been known for many years and the physics are well known since decades. But the challenge has always been to put the know how into (mass) production. This was the reason why no meta material has found its way into the automotive industry so far. But now things have changed: meta material became Meta Design and is going into serial production in 2024. Meta Design is a tunable spring mass system with foam acting as the spring and heavy layer as the mass. Meta Design is characterized by cavities in the foam and concentrated masses of the heavy layer as functionalized mass pins. By tuning the size of the cavities and the weight of the mass pins the acoustic performance can be adjusted to the requirements of each individual car line. After preliminary simulations, flat samples were tested in the lab. The next step was launched: the production and testing of a handmade prototype part of a firewall insulation for a Mercedes-Benz A-Class.
Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

Experimental Study of the Acoustics of a Electric Refrigerant Scroll Compressor

2024-06-12
2024-01-2924
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles re-quire larger refrigerant compressors, as the battery and the electric motors must be cooled in addition to the interior. The compressor causes the acoustic excitation of other refrigeration circuit components and the chassis via pressure pulsations and vibration transmission, as well as emitting airborne sound directly. Sound measurements have been performed in an anecho-ic chamber to investigate the influence of operating conditions on the acoustics of an electric scroll compressor. This paper investigates the influence of the operating conditions on com-pressor acoustics and shows that rotation speed is the main factor influencing compressor noise. The sound spectra of fluid, structure and airborne noise are dominated by speed-dependent, tonal components.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

Simulative Assessments of Cyclic Queuing and Forwarding with Preemption in In-Vehicle Time-Sensitive Networking

2024-04-09
2024-01-1986
The current automotive industry has a growing demand for real-time transmission to support reliable communication and for key technologies. The Time-Sensitive Networking (TSN) working group introduced standards for reliable communication in time-critical systems, including shaping mechanisms for bounded transmission latency. Among these shaping mechanisms, Cyclic Queuing and Forwarding (CQF) and frame preemption provide deterministic guarantees for frame transmission. However, despite some current studies on the performance analysis of CQF and frame preemption, they also need to consider the potential effects of their combined usage on frame transmission. Furthermore, there is a need for more research that addresses the impact of parameter configuration on frame transmission under different situations and shaping mechanisms, especially in the case of mechanism combination.
Technical Paper

Modeling and Time Discrete Characteristics Analysis of the Oil Filling Process of Wet Clutch for a Specialized Vehicle’s Automatic Transmission

2024-04-09
2024-01-2284
The automatic transmission of a specialized vehicle encountered challenges in achieving stable oil filling time due to the considerable variability of related parameters and the non-linear trends in the variation of individual product parameters over time. To investigate the underlying causes of this phenomenon and enhance the oil filling efficiency, a detailed model of the clutch oil filling process during gear shifting was established in this paper, which included dynamic models of the key components such as the hydraulic system, clutch, proportional valve, and oil passages. Physical experiments were performed on the test bench to compare with the simulation results. The results showed that the correlation between the simulation model and the test bench was well, which verified the effectiveness of the simulation model.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
X