Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Vehicle Architecture for Hybrid, Electric, Automated, and Shared Vehicle Design

2024-09-10
Electric and hybrid vehicle engineers and designers are faced with the important issue of how to adequately configure required powertrain system components to achieve needed performance, occupant accommodation, and operational objectives. This course enables participants to fully comprehend vehicle architectural/configurational design requirements to enable efficient structural design, effective packaging of required components, and efficient vehicle performance for shared and autonomous operation. The importance of integrating these design requirements with specific vehicle user needs and expectations will be emphasized.
Training / Education

Exploration of Machine Learning and Neural Networks for ADAS and L4 Vehicle Perception

2024-07-18
Convolutional neural networks are the de facto method of processing camera, radar, and lidar data for use in perception in ADAS and L4 vehicles, yet their operation is a black box to many engineers. Unlike traditional rules-based approaches to coding intelligent systems, networks are trained and the internal structure created during the training process is too complex to be understood by humans, yet in operation networks are able to classify objects of interest at error rates better than rates achieved by humans viewing the same input data.
Training / Education

Fuel Cells for Transportation

2024-07-16
This is a three-day course which provides a comprehensive and up to date introduction to fuel cells for use in automotive engineering applications. It is intended for engineers and particularly engineering managers who want to jump‐start their understanding of this emerging technology and to enable them to engage in its development. Following a brief description of fuel cells and how they work, how they integrate and add value, and how hydrogen is produced, stored and distributed, the course will provide the status of the technology from fundamentals through to practical implementation.
Technical Paper

Electromagnetic Compatibility Assessment of Electric Vehicles During DC-Charging with European Combined Charging System

2024-07-02
2024-01-3008
The ongoing energy transition will have a profound impact on future mobility, with electrification playing a key role. Battery electric vehicles (EVs) are the dominant technology, relying on the conversion of alternating current (AC) from the grid to direct current (DC) to charge the traction battery. This process involves power electronic components such as rectifiers and DC/DC converters operating at high switching frequencies in the kHz range. Fast switching is essential to minimize losses and improve efficiency, but it might also generate electromagnetic interferences (EMI). Hence, electromagnetic compatibility (EMC) testing is essential to ensure reliable system operations and to meet international standards. During DC charging, the AC/DC conversion takes place off-board in the charging station, allowing for better cooling and larger components, resulting in increased power transfer, currently up to 350 kW.
Technical Paper

Graph based cooperation strategies for automated vehicles in mixed traffic

2024-07-02
2024-01-2982
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm.
Technical Paper

Automated Park and Charge: Concept and Energy Demand Calculation

2024-07-02
2024-01-2988
In this paper we are presenting the concept of automated park and charge functions in different use scenarios. The main scenario is automated park and charge in production and the other use scenario is within automated valet parking in parking garages. The automated park and charge in production is developed within the scope of the publicly funded project E-Self. The central aim of the project is the development and integration of automated driving at the end-of-line in the production at Ford Motor Company's manufacturing plant in Cologne. The driving function thereby is mostly based upon automated valet driving with an infrastructure based perception and action planning. Especially for electric vehicles the state of charge of the battery is critical, since energy is needed for all testing and driving operations at end-of-line.
Technical Paper

Charging infrastructure for employer parking – Real data analysis and charging algorithms for future customer demands

2024-07-02
2024-01-2980
The mobility industry and the entire ecosystem is currently striving towards sus-tainable mobility which leads to continuous production ramp-up of electrified vehicles. The parallel increase of the charging infrastructure is faced with various challenges regarding needed investments and the connection into the electricity grid. MAHLE chargeBIG offers centralized and large scaled charging infrastruc-ture with more than 1,800 already installed charging points. This presentation and paper is evaluating the functionality of the system by ana-lyzing backend real data of various employer parking installations. It can be shown and proven that a single-phase charging concept is sufficient and able to manage most customer relevant charging events by considering the needs and limitations of the related electricity grid infrastructure. Smart charging algorithms enable the integration of the charging infrastructure in smart grid company environments.
Technical Paper

Optimization-Based Battery Thermal Management for Improved Regenerative Braking in CEP Vehicles

2024-07-02
2024-01-2974
The courier express parcel service industry (CEP industry) has experienced significant changes in the recent years due to increasing parcel volume. At the same time, the electrification of the vehicle fleets poses additional challenges. A major advantage of battery electric CEP vehicles compared to internal combustion engine vehicles is the ability to regenerate the kinetic energy of the vehicle in the frequent deceleration phases during parcel delivery. If the battery is cold the maximum recuperation power of the powertrain is limited by a reduced chemical reaction rate inside the battery. In general, the maximum charging power of the battery depends on the state of charge and the battery temperature. Due to the low power demand for driving during CEP operation, the battery self-heating is comparably low under cold ambient conditions. Without active conditioning of the battery, potential regenerative energy is lost as a result of the cold battery.
Technical Paper

Standardized Differential Inductive Positioning System for Wireless Charging of Electric Vehicles

2024-07-02
2024-01-2987
To shape future mobility MAHLE has committed itself to foster wireless charging for electrical vehicles. The standardized wireless power transfer of 11 kW at a voltage level of 800 V significantly improves the end user experience for charging an electric vehicle without the need to handle a connector and cable anymore. Combined with automated parking and autonomous driving systems, the challenge to charge fleets without user interaction is solved. Wireless charging is based on inductive power transfer. In the ground assembly’s (GA) power transfer coil, a magnetic field is generated which induces a voltage in the vehicle assembly (VA) power transfer coil. To transfer the power from grid to battery with a high efficiency up to 92% the power transfer coils are compensated with resonant circuits. In this paper the Differential-Inductive-Positioning-System (DIPS) to align a vehicle on the GA for parking will be presented.
Technical Paper

Environment-Adaptive Localization based on GNSS, Odometry and LiDAR Systems

2024-07-02
2024-01-2986
In the evolving landscape of automated driving systems, the critical role of vehicle localization within the autonomous driving stack is increasingly evident. Traditional reliance on Global Navigation Satellite Systems (GNSS) proves to be inadequate, especially in urban areas where signal obstruction and multipath effects degrade accuracy. Addressing this challenge, this paper details the enhancement of a localization system for autonomous public transport vehicles, focusing on mitigating GNSS errors through the integration of a LiDAR sensor. The approach involves creating a 3D map using the factor graph-based LIO-SAM algorithm based on GNSS, vehicle odometry, IMU and LiDAR data. The algorithm is adapted to the use-case by adding a velocity factor and altitude data from a Digital Terrain model. Based on the map a state estimator is proposed, which combines high-frequency LiDAR odometry based on FAST-LIO with low-frequency absolute multiscale ICP-based LiDAR position estimation.
Technical Paper

Runtime Safety Assurance of Autonomous Last-Mile Delivery Vehicles in Urban-like Environment

2024-07-02
2024-01-2991
The conventional process of last-mile delivery logistics often leads to safety problems for road users and a high level of environmental pollution. Delivery drivers must deal with frequent stops, search for a convenient parking spot and sometimes navigate through the narrow streets causing traffic congestion and possibly safety issues for the ego vehicle as well as for other traffic participants. This process is not only time consuming but also environmentally impactful, especially in low-emission zones where prolonged vehicle idling can lead to air pollution and to high operational costs. To overcome these challenges, a reliable system is required that not only ensures the flexible, safe and smooth delivery of goods but also cuts the costs and meets the delivery target.
Technical Paper

Sustainable Propulsion in a Post-Fossil Energy World: Life-Cycle Assessment of Renewable Fuel and Electrified Propulsion Concepts

2024-07-02
2024-01-3013
Faced with one of the greatest challenges of humanity – climate change – the European Union has set out a strategy to achieve climate neutrality by 2050 as part of the European Green Deal. To date, extensive research has been conducted on the CO2 life cycle analysis of mobile propulsion systems. However, achieving absolute net-zero CO2 emissions requires the adjustment of the relevant key performance indicators for the development of mobile propulsion systems. In this context, research is presented that examines the ecological and economic sustainability impacts of a hydrogen-fueled mild hybrid vehicle, a hydrogen-fueled 48V hybrid vehicle, a methanol-fueled 400V hybrid vehicle, a methanol-to-gasoline-fueled plug-in hybrid vehicle, a battery electric vehicle, and a fuel cell electric vehicle. For this purpose, a combined Life-Cycle Assessment (LCA) and Life-Cycle Cost Assessment was performed for the different propulsion concepts.
Technical Paper

What is going on around the Automotive PowerNet - An overview of state-of-the-art PowerNet, insights into the new trends, and a simulation solution to keep pace with architectural changes.

2024-07-02
2024-01-2985
The automotive PowerNet is facing a major transformation. The three main drivers are: • Increasing power • Availability requirements • PowerNet complexity and cost reduction These driving factors result in a wide variety of possible future PowerNet topologies. The increasing power demand is among others caused by the progressive electrification of formerly mechanical components and the trend of increasing number of comfort loads. This leads to a steady increase in installed electrical power. X-by-wire systems and autonomous driving functions result in higher availability requirements. As a result, the power supply of all safety-critical loads must always be kept sufficiently stable. To reduce costs and increase reliability, the car manufacturers aim to reduce the complexity of the PowerNet System, including the wiring harness and the controller network. The wiring harness e.g., is currently one of the costliest parts of modern cars. These challenges are met with different concepts.
Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
Technical Paper

Optimal and Prototype Dimensioning of Electrified Drives for Automated Driving

2024-07-02
2024-01-3021
Electrified drives will change significantly in the wake of the further introduction of automated driving functions. Precise drive dimensioning, taking automated driving into account, opens up further potential in terms of drive operation and efficiency as well as optimal component design. Central element for unlocking the dimensioning potentials is the knowledge about the driving functions and their application. In this paper the implications of automated driving on the drive and component design are discussed. A process and a virtual toolchain for electric drive development from concept optimization to detailed component dimensioning is presented. The process is subdivided into a concept optimization part for finding the optimal drive topology and layout and a detailed prototype dimensioning process, where the final detailed drive dimensioning is carried out.
X