Refine Your Search

Search Results

Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
Technical Paper

An Investigation of OME3-Diesel Fuel Blend on a Multi-Cylinder Compression Ignition Engine

2022-03-29
2022-01-0439
Oxygenated, low energy-density fuels have the potential to decouple the NOx-soot emissions trade-off in compression-ignition engines. Additionally, synthetic fuels can provide a pathway to reach carbon-neutral utilization of hydrocarbon-based fuels in IC engines. Oxymethylene Dimethyl Ether (OME) is one such synthetic, low energy-density fuel, derived from sustainable sources that in combination with conventional fossil fuels with higher energy content, has the potential to reduce CO2 emissions below the US and EU VI legislative limits, while maintaining ultra-low soot emissions. The objective of this work is to investigate and compare the performance, emissions and efficiency of a modern multi-cylinder diesel engine under conventional high temperature combustion (HTC) with two different fuels; 1) OME310 - a blend of 10% OME3 by volume, with conventional Ultra-Low Sulphur Diesel (ULSD), and 2) D100 - conventional ULSD in North America.
Technical Paper

Impact of Plasma Stretch on Spark Energy Release Rate under Flow Conditions

2022-03-29
2022-01-0438
Performance of the ignition system becomes more important than ever, because of the extensively used EGR in modern spark-ignition engines. Future lean burn SI and SACI combustion modes demand even stronger ignition capability for robust ignition control. For spark-based ignition systems, extensive research has been carried out to investigate the discharge characteristics of the ignition process, including discharge current amplitude, discharge duration, spark energy, and plasma stretching. The correlation between the spark stretch and the discharge energy, as well as the impact of discharge current level on this correlation, are important with respect to both ignition performance, and ignition system design. In this paper, a constant volume combustion chamber is applied to study the impact of plasma stretch on the spark energy release process with cross-flow speed from 0 m/s up to 70 m/s.
Technical Paper

Combustion and Emission Characteristics of SI and HCCI Combustion Fueled with DME and OME

2020-04-14
2020-01-1355
DME has been considered an alternative fuel to diesel fuel with promising benefits because of its high reactivity and volatility. Research shows that an engine fueled with DME will produce zero smoke emissions. However, the storage and the handling of the fuel are underlying difficulties owing to its high vapour pressure (530 kPa @ 20 °C). In lieu, OME1 fuel, a derivate of DME, offers advantages exhibited with DME fuel, all the while being a liquid fuel for engine application. In this work, engine tests are performed to realize the combustion behaviour of DME and OME1 fuel on a single-cylinder research engine with a compression ratio of 9.2:1. The dilution ratio of the mixture is progressively increased in two manners, allowing more air in the cylinder and applying exhaust gas recirculation (EGR). The high reactivity of DME suits the capability to be used in compression ignition combustion whereas OME1 must be supplied with a supplemental spark to initiate the combustion.
Technical Paper

Preliminary Testing of n-Butanol HCCI on High Compression Ratio Diesel Engines

2019-04-02
2019-01-0577
The control of combustion phasing in homogeneous charge compression ignition (HCCI) combustion is investigated with neat n-butanol in this work. HCCI is a commonly researched combustion mode, owing to its improved thermal efficiency over conventional gasoline combustion, as well as its lower nitrogen oxide (NOx) and particulate matter emissions compared to those of diesel combustion. Despite these advantages, HCCI lacks successful widespread implementation with conventional fuels, primarily due to the lack of effective combustion phasing control. In this preliminary study, chemical kinetic simulations are conducted to study the auto-ignition characteristics of n-butanol under varied background pressures, temperatures, and dilution levels using established mechanisms in CHEMKIN software. Increasing the pressure or temperature lead to a shorter ignition delay, whereas increasing the dilution by the application of exhaust gas recirculation (EGR) leads to a longer ignition delay.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Technical Paper

A Feasibility Study of Using DI Butanol as an Ignition Source for Dual-Fuel Combustion

2017-03-28
2017-01-0770
The combustion of dual-fuel engines usually uses a pilot flame to burn out a background fuel inside a cylinder under high compression. The background fuel can be either a gaseous fuel or a volatile liquid fuel, commonly with low reactivity to prevent premature combustion and engine knocking; whereas the pilot flame is normally set off with the direct injection of a liquid fuel with adequate reactivity that is suitable for deterministic auto-ignition with a high compression ratio. In this work, directly injected butanol is used to generate the pilot flame, while intake port injected ethanol or butanol is employed as the background fuel. Compared with the conventional diesel-only combustion, dual-fuel operations not only broaden the fuel applicability, but also enhance the potential for clean combustion, in high efficiency engines. The amount of background fuel and the scheduling of pilot flame are investigated through extensive laboratory experiments.
Technical Paper

Fuel Burn Rate Control to Improve Load Capability of Neat n-Butanol Combustion in a Modern Diesel Engine

2016-10-17
2016-01-2301
This research work investigates the control strategies of fuel burn rate of neat n-butanol combustion to improve the engine load capability. Engine tests of homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) with neat n-butanol show promising NOx and smoke emissions; however, the rapid burn rate of n-butanol results in excessive pressure rise rates and limits the engine load capability. A multi-event combustion strategy is developed to modulate the fuel burn rate of the combustion cycle and thus to reduce the otherwise high pressure rise rates at higher engine load levels. In the multi-event combustion strategy, the first combustion event is produced near TDC by the compression ignition of the port injected butanol that resembles the HCCI combustion; the second combustion event occurs near 7~12 degrees after TDC, which is produced by butanol direct injection (DI) after the first HCCI-like combustion event.
Journal Article

Experimental Investigation of Diesel-Ethanol Premixed Pilot-Assisted Combustion (PPAC) in a High Compression Ratio Engine

2016-04-05
2016-01-0781
In this work, empirical investigations of the diesel-ethanol Premixed Pilot-Assisted Combustion (PPAC) are carried out on a high compression ratio (18.2:1) single-cylinder diesel engine. The tests focus on determining the minimum ethanol fraction for ultra-low NOx & soot emissions, effect of single-pilot vs. twin-pilot strategies on emissions and ignition controllability, reducing the EGR requirements, enabling clean combustion across the load range and achieving high efficiency full-load operation. The results show that both low NOx and almost zero soot emissions can be achieved but at the expense of higher unburned hydrocarbons. Compared to a single-pilot injection, a twin-pilot strategy reduces the soot emissions significantly and also lowers the NOx emissions, thereby reducing the requirements for EGR. The near-TDC pilot provides excellent control over the combustion phasing, further reducing the need of a higher EGR quantity for phasing control.
Technical Paper

Heat Release Analysis of Clean Combustion with Ethanol Ignited by Diesel in a High Compression Ratio Engine

2016-04-05
2016-01-0766
The control of nitrogen oxide and smoke emissions in diesel engines has been one of the key researches in both the academia and industry. Nitrogen oxides can be effectively suppressed by the use of exhaust gas recirculation (EGR). However, the introduction of inert exhaust gas into the engine intake is often associated with high smoke emissions. To overcome these issues there have been a number of proposed strategies, one of the more promising being the use of low temperature combustion enabled with heavy EGR. This has the potential to achieve simultaneously low emissions of nitrogen oxide and smoke. However, a quantitative way to identify the transition zone between high temperature combustion and low temperature combustion has still not been fully explored. The combustion becomes even more complicated when ethanol fuel is used as a partial substitution for diesel fuel.
Journal Article

Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine

2015-04-14
2015-01-0808
This study investigated neat n-butanol combustion, emissions and thermal efficiency characteristics in a compression ignition (CI) engine by using two fuelling techniques - port fuel injection (PFI) and direct injection (DI). Diesel fuel was used in this research for reference. The engine tests were conducted on a single-cylinder four-stroke DI diesel engine with a compression ratio of 18.2 : 1. An n-Butanol PFI system was installed to study the combustion characteristics of Homogeneous Charge Compression Ignition (HCCI). A common-rail fuel injection system was used to conduct the DI tests with n-butanol and diesel. 90 MPa injection pressure was used for the DI tests. The engine was run at 1500 rpm. The intake boost pressure, engine load, exhaust gas recirculation (EGR) ratio, and DI timing were independently controlled to investigate the engine performance.
Journal Article

A Zero-Dimensional Intake Dilution Tracking Algorithm for Real-Time Feedback on Exhaust Gas Recirculation

2015-04-14
2015-01-1714
This study describes a zero-dimensional algorithm for tracking the intake dilution in real-time. The inputs to the model are the oxygen concentration from the exhaust oxygen sensor, the manifold air pressure and temperature (MAP/MAT), the mass air flow (MAF) and the estimated fuel injected per cycle from the engine control module. The intake manifold, the exhaust manifold and EGR system are discretized into 3 volumes and the detailed concentrations of the gas species comprising the exhaust, EGR and intake streams are tracked at each time step (on a cycle-by-cycle basis). The model does not need the EGR ratio to be known in advance and is also applicable to oxygenated fuels such as ethanol. The model response is tuned to a multi-cylinder engine and the model output is empirically validated against a wide range of engine operations including load and EGR transients.
Technical Paper

Efficiency and Emission Trade-Off in Diesel-Ethanol Low Temperature Combustion Cycles

2015-04-14
2015-01-0845
An experimental investigation of low temperature combustion (LTC) cycles is conducted with diesel and ethanol fuels on a high compression ratio (18.2:1), common-rail diesel engine. Two LTC modes are studied; near-TDC injection of diesel with up to 60% exhaust gas recirculation (EGR), and port injected ethanol ignited by direct injection of diesel with moderate EGR (30-45%). Indicated mean effective pressures up to 10 bar in the diesel LTC mode and 17.6 bar in the dual-fuel LTC mode have been realized. While the NOx and smoke emissions are significantly reduced, a thermal efficiency penalty is observed from the test results. In this work, the efficiency penalty is attributed to increased HC and CO emissions and a non-conventional heat release pattern. The influence of heat release phasing, duration, and shape, on the indicated performance is explained with the help of parametric engine cycle simulations.
Technical Paper

Energy Efficiency Comparison between Butanol and Ethanol Combustion with Diesel Ignition

2015-04-14
2015-01-0859
The use of low temperature combustion (LTC) in diesel engines tends to suppress the NOx and dry soot emissions from diesel engines. However, due to the limitations of conventional diesel fuel properties, such as the high reactivity and low volatility, implementation of LTC is highly dependent on the application of exhaust gas recirculation (EGR). While the replacement of some of the fresh air intake with the burnt exhaust gas using EGR prevents premature combustion, it also results in a reduction in thermal efficiency. In this work, the use of two different alcohol fuels, ethanol and butanol, in a high compression ratio diesel engine has been investigated to examine their potential as substitutes for conventional diesel fuel when operating under low temperature combustion mode. The effect of diesel injection timing, alcohol fuel ratios, and EGR on engine emissions and efficiency were studied at indicated mean effective pressures in the range 0.8 to 1.2 MPa.
Technical Paper

Combustion and Exhaust Gas Speciation Analysis of Diesel and Butanol Post Injection

2015-04-14
2015-01-0803
Experimental testing was done with a modern compression ignition engine to study the effect of the engine load and the effect of different fuels on the post injection characteristics. Two different fuels were utilized; ultra-low sulphur diesel and n-butanol. The results showed that a post injection can be an effective method for increasing the operating range of the engine load. Engine operation at high load can be limited by the peak cylinder pressure but the test results showed that an early post injection can increase the engine load without increasing the peak in-cylinder pressure. Neat butanol combustion may have a very high peak in-cylinder pressure and a very high peak pressure rise rate even at low load conditions. The test results showed that a butanol post injection can contribute to engine power without significantly affecting the peak pressure rise rate and the peak in-cylinder pressure.
Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

2014-04-01
2014-01-1092
Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.
Technical Paper

Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol

2014-04-01
2014-01-1298
The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure.
Technical Paper

Renewable Ethanol Use for Enabling High Load Clean Combustion in a Diesel Engine

2013-04-08
2013-01-0904
As a renewable energy source, the ethanol fuel was employed with a diesel fuel in this study to improve the cylinder charge homogeneity for high load operations, targeting on ultra-low nitrogen oxides (NOx) and smoke emissions. A light-duty diesel engine is configured to adapt intake port fuelling of the ethanol fuel while keeping all other original engine components intact. High load experiments are performed to investigate the combustion control and low emission enabling without sacrificing the high compression ratio (18.2:1). The intake boost, exhaust gas recirculation (EGR) and injection pressure are independently controlled, and thus their effects on combustion and emission characteristics of the high load operation are investigated individually. The low temperature combustion is accomplished at high engine load (16~17 bar IMEP) with regulation compatible NOx and soot emissions.
Technical Paper

Low Temperature Combustion Strategies for Compression Ignition Engines: Operability limits and Challenges

2013-04-08
2013-01-0283
Low temperature combustion (LTC) strategies such as homogeneous charge compression ignition (HCCI), smokeless rich combustion, and reactivity controlled compression ignition (RCCI) provide for cleaner combustion with ultra-low NOx and soot emissions from compression-ignition engines. However, these strategies vary significantly in their implementation requirements, combustion characteristics, operability limits as well as sensitivity to boundary conditions such as exhaust gas recirculation (EGR) and intake temperature. In this work, a detailed analysis of the aforementioned LTC strategies has been carried out on a high-compression ratio, single-cylinder diesel engine. The effects of intake boost, EGR quantity/temperature, engine speed, injection scheduling and injection pressure on the operability limits have been empirically determined and correlated with the combustion stability and performance metrics.
Journal Article

Mode Switching Control for Diesel Low Temperature Combustion with Fast Feedback Algorithms

2012-04-16
2012-01-0900
Low temperature combustion (LTC) in diesel engines can be enabled using a multitude of fuel injection strategies, coupled with the elevated use of exhaust gas recirculation and intake boost. The common modes of LTC include the single-injection LTC with heavy EGR and the homogeneous charge compression ignition (HCCI), implemented with multiple early-injections during the compression stroke. Previous research indicates that the single-injection LTC is more suitable at low engine loads while the HCCI combustion can be targeted towards mid-load operation. To extend the load range of the LTC cycles, there is an urgent need to enable switching on-the-fly between the two combustion modes. The mode-switching is complicated by the fact that the challenges of enabling and ensuring stable engine operation under these two LTC modes are notably different.
X