Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Investigation of Stator Cooling Concepts of an Electric Machine for Maximization of Continuous Power

2024-07-02
2024-01-3014
With the automotive industry's increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today's development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts.
Technical Paper

Software-supported Processes for Aerodynamic Homologation of Vehicles

2024-07-02
2024-01-3004
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined.
Technical Paper

Traceability E-Fuels 2035

2024-07-02
2024-01-3022
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
Gas bearings are an effective solution to high-speed rotor applications for its contamination free, reduced maintenance and higher reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings (GFBs), whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity. A detailed study is required to assess the performance of high-speed rotor systems supported on GFBs, therefore in this study a bump type GFB is analyzed for its static and dynamic characteristics. The static characteristics are obtained by solving the non-linear Reynolds equation through an iterative procedure.
Technical Paper

Federated Learning Enable Training of Perception Model for Autonomous Driving

2024-04-09
2024-01-2873
For intelligent vehicles, a robust perception system relies on training datasets with a large variety of scenes. The architecture of federated learning allows for efficient collaborative model iteration while ensuring privacy and security by leveraging data from multiple parties. However, the local data from different participants is often not independent and identically distributed, significantly affecting the training effectiveness of autonomous driving perception models in the context of federated learning. Unlike the well-studied issues of label distribution discrepancies in previous work, we focus on the challenges posed by scene heterogeneity in the context of federated learning for intelligent vehicles and the inadequacy of a single scene for training multi-task perception models. In this paper, we propose a federated learning-based perception model training system.
Technical Paper

Internet of Autonomous Vehicles for The Distribution System of Smart Cities

2024-04-09
2024-01-2882
With the development of internet technology and autonomous vehicles (AVs), the multimodal transportation and distribution model based on AVs will be a typical application paradigm in the smart city scenario. Before AVs carry out logistics distribution, it is necessary to plan a reasonable distribution path based on each customer point, and this is also known as Vehicle Routing Problem (VRP). Unlike traditional VRP, the urban logistics distribution process based on multimodal transportation mode will use a set of different types of AVs, mainly including autonomous ground vehicles and unmanned aerial vehicles (UAVs). It is worth pointing out that there is currently no research on combining the planning of AVs distribution paths with the trajectory planning of UAVs. To address this issue, this article establishes a bilevel programming model. The upper-level model aims to plan the optimal delivery plan for AVs, while the lower-level model aims to plan a driving trajectory for UAVs.
Technical Paper

A Systematic Approach for Creation of SOTIF’s Unknown Unsafe Scenarios: An Optimization based Method

2024-04-09
2024-01-1966
Verification and validation (V&V) of autonomous vehicles (AVs) is a challenging task. AVs must be thoroughly tested, to ensure their safe functionality in complex traffic situations including rare but safety-relevant events. Furthermore, AVs must mitigate risks and hazards that result from functional insufficiencies, as described in the Safety of the Intended Functionality (SOTIF) standard. SOTIF analysis includes iterative identification of driving scenarios that are not only unsafe, but also unknown. However, identifying SOTIF’s unknown-unsafe scenarios is an open challenge. In this paper we proposed a systematic optimization-based approach for identification of unknown-unsafe scenarios. The proposed approach consists of three main steps including data collection, feature extraction and optimization towards unknown unsafe scenarios.
Technical Paper

Estimation of Poroelastic Material Properties of Noise Control Treatments Using Model Order Reduction

2024-04-09
2024-01-2336
Noise reduction is generally accomplished by applying appropriate noise control treatments at strategic locations. Noise control treatments consisting of poroelastic materials in layers are extensively used in noise control products. Sound propagation through poroelastic materials is governed by macroscopic material and geometric properties. Thus, a knowledge of material properties is important to improve the acoustical performance of the resulting noise control products. Since the direct measurement of these properties is cumbersome, these have been usually estimated indirectly from easily measurable acoustic performance metrics such as normal incidence sound transmission and/or absorption coefficient, measured using readily available impedance tube. The existing inverse characterization approaches fulfilled the estimation by curve fitting measured and predicted acoustic models.
Technical Paper

A Novel Torque Distribution Approach of Four-Wheel Independent-Drive Electric Vehicles for Improving Handling and Energy Efficiency

2024-04-09
2024-01-2315
This paper presents a torque distribution strategy for four-wheel independent drive electric vehicles (4WIDEVs) to achieve both handling stability and energy efficiency. The strategy is based on the dynamic adjustment of two optimization objectives. Firstly, a 2DOF vehicle model is employed to define the stability control objective for Direct Yaw moment Control (DYC). The upper-layer controller, designed using Linear Quadratic Regulator (LQR), is responsible for tracking the target yaw rate and target sideslip angle. Secondly, the lower-layer torque distribution strategy is established by optimizing the tire load rate and motor energy consumption for dynamic adjustment. To regulate the weights of the optimization targets, stability and energy efficiency allocation coefficient is introduced. Simulation results of double lane change and split μ road conditions are used to demonstrate the effectiveness of the proposed DYC controller.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

Parameterization of an Electrochemical Battery Model Using Impedance Spectroscopy in a Wide Range of Frequency

2024-04-09
2024-01-2194
The parameterization of the electrochemical pseudo-two-dimensional (P2D) model plays an important role as it determines the acceptance and application range of subsequent simulation studies. Electrochemical impedance spectroscopy (EIS) is commonly applied to characterize batteries and to obtain the exchange current density and the solid diffusion coefficient of a given electrode material. EIS measurements performed with frequencies ranging from 1 MHz down to 10 mHz typically do not cover clearly isolated solid state diffusion processes of lithium ions in positive or negative electrode materials. To extend the frequency range down to 10 μHz, the distribution function of relaxation times (DRT) is a promising analysis method. It can be applied to time-domain measurements where the battery is excited by a current pulse and relaxed for a certain period.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Validation and Analysis of Driving Safety Assessment Metrics in Real-world Car-Following Scenarios with Aerial Videos

2024-04-09
2024-01-2020
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles.
Technical Paper

Analysis of Thermal Stress on Silicon Nitride Surface Caused by Drop-Wall Interaction at Engine Conditions

2024-04-09
2024-01-2584
The phenomenon of drop-wall interaction plays a crucial role in a wide range of industrial applications. When liquid droplets come into contact with a high-temperature surface, it can lead to thermal shock due to rapid temperature fluctuations. This abrupt temperature change can generate thermal stress within the solid wall material. If the thermal stress exceeds the material's strength in that specific stress mode, it can result in material failure. Therefore, it is imperative to delve into the evolving temperature patterns on high-temperature surfaces to optimize material durability. This study focuses on investigating drop-wall interactions within the context of engine environments. To achieve this, the Smoothed Particle Hydrodynamics (SPH) method is employed to simulate the impact of fuel droplets on a silicon nitride wall. The goal is to understand the heat transfer mechanisms, thermal penetration depths, and temperature distributions within the heated wall.
Technical Paper

Multicast Transmission in DDS Based on the Client-Server Discovery Model

2024-04-09
2024-01-2392
The functions of modern intelligent connected vehicles are becoming increasingly complex and diverse, and software plays an important role in these advanced features. In order to decouple the software and the hardware and improve the portability and reusability of code, Service-Oriented Architecture (SOA) has been introduced into the automotive industry. Data Distribution Service (DDS) is a widely used communication middleware which provides APIs for service-oriented Remote Procedure Call (RPC) and Service-Oriented Communications (SOC). By using DDS, application developers can flexibly define the data format according to their needs and transfer them more conveniently by publishing and subscribing to the corresponding topic. However, current open source DDS protocols all use unicast communication during the transmission of user data. When there are multiple data readers subscribing to the same topic, the data writer needs to send a unicast message to each data reader individually.
Technical Paper

NHTSA’s Evaluation of Glazing Performance Testing

2024-04-09
2024-01-2491
FMVSS No. 205, “Glazing Materials,” uses impact test methods specified in ANSI/SAE Z26.1-1996. NHTSA’s Vehicle Research and Test Center initiated research to evaluate a subset of test methods from ANSI Z26.1-1996 including the 227 gram ball and shot bag impact tests, and the fracture test. Additional research was completed to learn about potential changes to tempered glass strength due to the ceramic paint area (CPA), and to compare the performance of twelve by twelve inch flat samples and full-size production parts. Glass evaluated included tempered rear quarter, sunroof, and backlight glazing. Samples with a paint edge were compared to samples without paint, and to production parts with and without paint in equivalent impact tests. A modified shot bag with stiffened sidewalls was compared to the ANSI standard shot bag. The fracture test comparison included evaluating the ANSI Z26.1 impact location and ECE R43 impact location.
X