Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A 5 Phase Brake Insulator Engineering Selection Process

2006-10-08
2006-01-3220
Brake squeal signatures (2 kHz to 18 kHz) have tonal content highly dependent on the specific brake system structural architecture. The challenge in minimizing squeal involves correctly identifying the conditions (temperature, apply pressure, rotor speed as some basic parameters) of occurrence, defining the underlying structural dynamics of the system and applying appropriate suppression solutions. The quantitative metric of improvement is the cumulative event percentage of occurrence. Design variables of the brake system and performance attribute targets extend the challenge beyond the level of just reducing noise. Consideration of material costs, manufacturing/assembly factors, durability, thermal management as well as other factors narrow the solution space significantly. Compressed late stage development is not uncommon in reaching acceptable levels of performance and is a primary reason for following a well defined process flow with provision for alternative solutions.
Technical Paper

Brake Insulator Development: Thermal and Structural Dynamic Semi-Empirical Design Guidance/Data Synthesis Methods

2006-10-08
2006-01-3219
The brake insulator performs a significant function when properly designed in controlling the brake system high frequency dynamic instabilities leading to brake squeal. The second major challenge is thermal management. It provides the direct heat flow, storage and corresponding temperature differential profile between the rotor and piston. Suboptimal thermal control can lead to lower operational bands of damping outside of the peak loss factor range, variation in modal dynamics with temperature, heat aging and degradation of elastomer/visco-elastic polymer physical properties [2, 3]. Design of the insulator is dictated by the unique squeal signature (and associated thermal cycles) specific to the brake corner architecture. Short time frame insulator solutions are typically required in the later development stages with no latitude for design modification flexibility.
X