Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of a Soft-Actor Critic Reinforcement Learning Algorithm for the Energy Management of a Hybrid Electric Vehicle

2024-06-12
2024-37-0011
In recent years, the urgent need to fully exploit the fuel economy potential of the Electrified Vehicles (xEVs) through the optimal design of their Energy Management System (EMS) have led to an increasing interest in Machine Learning (ML) techniques. Among them, Reinforcement Learning (RL) seems to be one of the most promising approaches thanks to its peculiar structure, in which an agent is able to learn the optimal control strategy through the feedback received by a direct interaction with the environment. Therefore, in this study, a new Soft Actor-Critic agent (SAC), which exploits a stochastic policy, was implemented on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle (PHEV) available on the European market. The SAC agent was trained to enhance the fuel economy of the PHEV while guaranteeing its battery charge sustainability.
Technical Paper

Exploring methanol and naphtha as alternative fuels for a hybrid-ICE battery-driven light-duty vehicle

2024-06-12
2024-37-0021
In pursuing sustainable automotive technologies, exploring alternative fuels for hybrid vehicles is crucial in reducing environmental impact and aligning with global carbon emission reduction goals. This work compares methanol and naphtha as potential suitable alternative fuels for running in a battery-driven light-duty hybrid vehicle by comparing their performance with the diesel baseline engine. This work employs a 0-D vehicle simulation model within the GT-Power suite to replicate vehicle dynamics under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The vehicle choice enables the assessment of a delivery application scenario using distinct payload capacities: 0%, 25%, 50%, and 100%. The model is fed with engine maps derived from previous experimental work conducted in the same engine, in which a full calibration was obtained that ensures the engine's operability in a wide region of rotational speed and loads.
Technical Paper

Evaluation of an optimal engine configuration for a SI Engine Fueled with Ethanol for Stationary Applications

2024-06-12
2024-37-0024
This work aims at investigating the optimal configuration of an internal combustion engine fueled with bio-ethanol for improving its brake power and efficiency as well as for reducing the NOx emissions, in stationary applications. A turbocharged spark ignition engine characterized by a single-point injection was preliminarily considered; subsequently, a direct injection configuration was investigated. For both cases, a 1-D numerical model was developed to compare the injection configurations under stoichiometric conditions and different spark timings. The analysis shows that the direct injection guarantees: a limited improvement of brake power and efficiency when the same spark timing is adopted, while NOx emissions increases by 20%; an increase of 6% in brake power and 2 percentage points in brake thermal efficiency by adopting the knock limited spark advance, but an almost double NOx emissions increase.
Technical Paper

Experimental Assessment of Drop-in Hydrotreated Vegetable Oil (HVO) in a Medium-Duty Diesel Engine for Low-emissions Marine Applications

2024-06-12
2024-37-0023
Nowadays, the push for more ecological low-carbon propulsion systems is high in all mobility sectors, including the recreational or light-commercial boating, where propulsion is usually provided by internal combustion engines derived from road applications. In this work, the effects of replacing conventional fossil-derived B7 diesel with Hydrotreated Vegetable Oil (HVO) were experimentally investigated in a modern Medium-Duty Engine, using the advanced biofuel as drop-in and testing according to the ISO 8178 marine standard. The compounded results showed significant benefits in terms of NOx, Soot, mass fuel consumption and WTW CO2 thanks to the inner properties of the aromatic-free, hydrogen-rich renewable fuel, with no impact on the engine power and minimal deterioration of the volumetric fuel economy.
Event

Program - Government/Industry Meeting

2024-04-25
The Government/Industry Meeting technical program is designed to provide an open forum to discuss the critical impacts that legislation has on vehicle design from R&D to customer acceptance.
Event

2024 NAIPC

2024-04-25
NAIPC reflects modern developments in alternative, electrified propulsion systems, high tech gasoline, diesel ICEs, hydrogen fuel cells, battery electric systems, variable transmissions.
Event

Attend - 2024 Government/Industry Meeting

2024-04-25
The Government/Industry Meeting technical program is designed to provide an open forum to discuss the critical impacts that legislation has on vehicle design from R&D to customer acceptance.
Event

Exhibit/Sponsor - 2025 Government/Industry Meeting

2024-04-25
Annual conference government policy, regulatory makers, automotive industry neutral forum discuss US government regulation, technology, customer acceptance future vehicle design. industry event safety, emission control, fuel efficiency, automated vehicles.
Event

Contact - 2025 Government Industry Meeting

2024-04-25
Annual conference government policy, regulatory makers, automotive industry neutral forum discuss US government regulation, technology, customer acceptance future vehicle design. industry event safety, emission control, fuel efficiency, automated vehicles.
Event

Attend - 2023 Government/Industry Meeting

2024-04-25
The Government/Industry Meeting technical program is designed to provide an open forum to discuss the critical impacts that legislation has on vehicle design from R&D to customer acceptance.
Event

Request Info - Exhibit/Sponsor - 2025 Government/Industry Meeting

2024-04-25
Annual conference government policy, regulatory makers, automotive industry neutral forum discuss US government regulation, technology, customer acceptance future vehicle design. industry event safety, emission control, fuel efficiency, automated vehicles.
X