Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Study of Stoichiometric and Lean Combustion in a Spark Ignition, Direct Injection Optical Engine Using E10 and ETBE20 Fuels

2022-08-30
2022-01-1003
Biofuels are a promising alternative to fossil fuels as their availability has been reduced during the last decades and they are the main sources of greenhouse gases emissions. Moreover, the targets of the international regulations include reduction of fossil fuels consumption, and improvement of the sustainability of the vehicle fleet. Blending gasoline with biofuels will result in changes in fuel blending procedures and combustion process especially for the gasoline direct injection (GDI) engines. In this article, flame visualization using chemiluminescence techniques in a Single Cylinder Optical Research Engine (SCORE) is presented, with an adjusted intake pressure of 850 mbar and early intake single injection (280 CAD BTDC), by using 100% hydrocarbon-based gasoline, E10 (90% gasoline - 10% ethanol) and ETBE20 (80% gasoline - 20% ethyl tert-butyl ether). ETBE20 is a potential alternative for E10, as it contains the same amount of renewable fuel and has low water solubility.
Technical Paper

Evaluation of Sustainable Alternative Fuel from Waste Coffee Grounds

2021-09-21
2021-01-1206
In the frame of circular economy, wastes are perceived as sources not only for the recovery of high added-value compounds but also for energy production. Coffee is one of the most popular beverages with the consumption continuously increasing and generating huge amounts of solid residues in return. This solid waste after the extraction of the coffee beverage is known as Waste or Spent Coffee Grounds (WCG). Among others, the valorization has the potential to be directed as a bioresource for sustainable energy and particularly for the production of alternative liquid fuels for internal combustion engines. The aim of the current study is to formulate alternative fuel from WCG and to examine the fundamental properties per relevant specifications and requirements. Parameters related to stability, cold flow properties, lubricating characteristics and ignition quality are studied in comparison with other types of biodiesel fuel.
Technical Paper

Particulate Contamination in Biodiesel Fuel under Long-Term Storage

2020-09-15
2020-01-2143
Many incidents associated with filter plugging have extensively been reported in microbially contaminated diesel and biodiesel fuel systems, especially under long term storage conditions. In this study a quantitative assessment of the undesirable insoluble solids produced in contaminated biodiesel fuels was carried out in order to evaluate their evolution rate during biodeterioration. For this purpose, a series of contaminated biodiesel fuel microcosms were prepared and stored for six months under stable conditions. The quantity of the particulate contaminants was monitored during storage by a multiple filtration technique which was followed at the end by a comparison with the active bioburden per ATP bioluminescence protocol. Additionally, identical microcosms were treated with a commercially available biocide in order to examine the latter’s activity both on solids formation and the microbial proliferation.
Technical Paper

Characterization of Hydroprocessed Used Cooking Oils as High Cetane Number Blending Component for Automotive Diesel

2018-09-10
2018-01-1745
Renewable substitutes for transportation fuels have had an important role in the recent years. Hydrotreated vegetable oils (HVO) are produced from two stage hydrotreating process of vegetable oils. The second stage of this hydroteating process is used to convert normal paraffins to isoparaffins in order to improve cold flow properties of these fuels. As this stage is a high energy consuming process, it is of interest to investigate the characteristics and the usability of the first stage of hydrotreatment of lipids. This paper examines the properties of alternative fuel derived from the hydrotreatment of used cooking oil (UCO). Used cooking oil is a difficult feedstock for biodiesel production. The hydrotreating of UCO converts triglycerides mainly into normal paraffins within the diesel fuel range. The hydrotreated UCO (HUCO) has an excellent cetane number and cetane index (>90), but very poor cold flow properties.
Technical Paper

Experimental Investigation on the Stabilizing Effect of n-Butanol on Diesel-Bioethanol Blends

2018-09-10
2018-01-1744
In accordance to the current environmental policy of the European Union by 2020, 10% of the transport fuel in every country comes from renewable sources such as biofuels. One of the most popular biofuels, (bio) ethanol is a probable suitable candidate for addition in diesel fuel because of its cleaner combustion and the ability to reduce emissions of gaseous pollutants. However, its use presents some important problems, attributed mainly to its incompatibility with diesel fuel during mixing due to the difference in the polarity. For this reason, substances that act as stabilizers of these mixtures are used, one of the most suitable being butanol. This substance is compatible with diesel fuel and ethanol, acting as a chemical bridge between the two, but also exhibits positive combustion behavior, as it is also an oxygenate that can be produced from renewable sources as well. The aim of this work was to investigate the behavior of diesel-ethanol mixtures using butanol as co-solvent.
Technical Paper

Evaluation of the Stability and Ignition Quality of Diesel-Biodiesel-Butanol Blends

2017-10-08
2017-01-2320
FAME is the most common renewable component of conventional automotive diesel. Despite the advantages, biodiesel is more susceptible to oxidative deterioration and due to its chemical composition as well as its higher affinity to water, is considered to be a favorable substrate for microorganisms. On the other hand, apart from biodiesel, alcohols are considered to be promising substitutes to conventional diesel fuel because they can offer higher oxygen concentration leading to better combustion characteristics and lower exhaust emissions. More specifically, n-butanol is a renewable alcohol demonstrating better blending capabilities and properties when it is added to diesel fuel, as its composition is closer to conventional fuel, when compared ethanol to for example. Taking into consideration the alleged disinfectant properties of alcohols, it would be interesting to examine also the microbial stability of blends containing n-butanol in various concentrations.
Technical Paper

Assessment of the Oxidation Stability of Biodiesel Fuel using the Rancimat and the RSSOT methods

2014-10-13
2014-01-2758
For many years Rancimat was the only standardized method for measuring the oxidation stability of FAME and FAME/diesel blends. However this method is not applicable to pure conventional petroleum products and so the effect of FAME on diesel fuel stability could not be evaluated directly. Recently a Rapid Small Scale Oxidation Test (RSSOT) that covers the determination of the stability of biofuels and petroleum products was developed and standardized. In this study the oxidation stability of seven different types of FAMEs was assessed, either neat or blended with three types of ULSD fuel, by employing both the Rancimat and the RSSOT accelerated oxidation methods. The determinations from either test were analyzed and a comparative assessment of these two method was carried out.
Journal Article

Characterization of Hydroprocessed Used Cooking Oils in Blend with Low Quality Gasoil Samples

2014-04-01
2014-01-1468
The scope of this work is to examine the use of hydroprossed used cooking oils as substitute for automotive diesel fuel. Hydroprocessing is an alternative method for the transformation of vegetable oils into high quality transport fuels, even if the quality of the oils is low, such as used cooking oils. In the present work, the utilization of hydroprocessed used cooking oil (HUCO) as neat fuel was proved to be very difficult, due to its very poor cold flow properties; therefore, mixtures of the HUCO with low quality middle distillates (a low cetane number gasoil and a light cycle oil) were prepared and evaluated. Throughout the process the formed blends were evaluated according to the european standard EN 590. The following points were mainly recorded: The lower density of HUCO was beneficial, permitting the use of poor quality distillates, in specific concentrations, and the high cetane number of HUCO was appreciable, improving the worse behavior of the other components.
Journal Article

Impact of Oxidation on Lubricating Properties of Biodiesel Blends

2013-10-14
2013-01-2596
The lubricating efficiency is an important property of diesel fuel since several diesel engine parts, such as pumps and injectors, are lubricated by the fuel itself only. The evolution of oxidation products during oxidative deterioration may as well affect the lubricating properties of the biodiesel fuel blends and thus the proper functioning of a diesel engine. In this study Fatty Acid Methyl Esters were produced from various types of feedstock that significantly differentiate in their fatty acid profile. Each methyl ester was blended with an Ultra Low Sulphur Automotive Diesel (ULSD) at a concentration of 7% v/v which is currently the maximum acceptable FAME content according to the European Standard EN590. The B7 biodiesel blends were evaluated regarding fundamental physicochemical properties as well as their lubricating efficiency. Oxidation stability was examined on a Rancimat apparatus according to EN 15751 standard.
Journal Article

Evaluation of the Oxidation Stability of Diesel/Biodiesel Blends using the Modified Rancimat Method

2009-06-15
2009-01-1828
This study describes the effect of different types of biodiesel (fatty acid methyl esters, FAME) on the oxidative stability of low and ultra low sulfur automotive diesel fuels. Eight different samples of FAME were employed to create blends of 2, 3, 4, 5, 7, and 10% v/v with four different types of diesel fuels. The samples were analyzed using the modified Rancimat method (EN 15751). The aim of this paper was to evaluate the impact of biodiesel source material and biodiesel concentration in diesel fuel, on the oxidation stability of the final blend. Moreover, the effect of sulfur content and the presence of cracked stocks in the base diesel fuel, on the oxidation stability of the final blends were also investigated.
Journal Article

Impact of Simultaneous ETBE and Ethanol Addition on Motor Gasoline Properties

2008-10-06
2008-01-2503
This study examines the impact of ETBE and ethanol addition on the main properties of motor gasoline. European Union mandates the use of biofuels in all transport fuels, according to the 2003/30/EC Directive. The addition of ethanol, a known octane enhancing component, in small proportions significantly increases the vapor pressure of the final gasoline, exceeding the maximum specification limits. ETBE (ethyl tert-butyl ether) is on the other hand an excellent but expensive octane enhancing component with beneficial impact on vapor pressure of the final gasoline. This paper examines the ability of ETBE to act as a stabilizer in gasoline - ethanol blends. Two gasoline samples with different chemical compositions and characteristics were prepared by blending basic refinery components. In each sample, ETBE was added in concentrations of 2, 4, and 6 % V/V respectively. In each of these ETBE - gasoline blends, ethanol was added in concentrations from 1 to 6 % V/V in 1% steps.
X