Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Commercial Vehicles Thrust Rod Static and Dynamic Characteristics Analysis

2016-10-17
2016-01-2345
In order to study the static and dynamic characteristics of the thrust rod. Based on the multi-body dynamics theory, the dynamic model of the thrust rod and the vehicle system is established by using ADAMS software. The limit braking condition is simulated, and the limit braking load of the thrust rod is obtained. Thrust rod finite element model is established, the load calculation value and rubber test data as a finite element analysis of input conditions, using ABAQUS software to carry on the stiffness and strength analysis, analysis results show that the strength meets the requirement, and the stiffness and strength calculation result is in good agreement with the sample test, accurately describes the finite element model. The analytical method used can be used to predict the stiffness of the thrust rod.
Technical Paper

Balanced Suspension Thrust Rod Fatigue Life Prediction

2016-09-27
2016-01-8044
In order to predict the fatigue life of thrust rod heavy duty commercial vehicle balanced suspension, based on the continuum mechanics theory, the fatigue life prediction model of rubber with equivalent effect as damage parameter is established. Based on the equivalent stress and fatigue cumulative damage theory, the fatigue damage evolution equation of rubber material expressed by stress is derived by using the strain energy function. The general fatigue life model is established by using the maximum logarithmic principal strain as the damage parameter. The finite element model of the thrust rod is established, and the stress distribution of the spherical hinge rubber layer and the easy damage area are analyzed. Based on the equivalent stress calculation results and the axial tension stress and strain data of the rubber material, the accuracy of the results of the finite element calculation is verified.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

2015-04-14
2015-01-0635
For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Technical Paper

Multi-objective Optimization of the Variable Stiffness Suspension of a Light Bus Based on Artificial Immune Algorithm

2014-04-01
2014-01-0883
In order to reasonably match the variable stiffness suspension and optimize the ride comfort and stability of a light bus, a virtual prototype model of the light bus was established in Adams-Car. Before the optimization, the tyre mechanical characteristics were tested by using a plate-type tyre tester, then the magic formula model of the tyre (Pac2002) was obtained by means of the global parameter identification method. The vertical vibration of the virtual model was simulated with the simulated B-class road profile, and its handling stability performance was also studied by simulation of the pylon course slalom test and steady static circular test. After that, an optimal method of the variable stiffness suspension was put forward. In the proposed method, the two-level stiffness (k1, k2) and the damping of the rear suspension and the torsional stiffness of the pre and post stabilizer bars were taken as the optimal variables.
X