Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Research on the Performance of Magnetorheological Fluid Auxiliary Braking Devices Thermal Management System Based on Flat Plate Heat Pipes

2020-04-14
2020-01-0894
To prevent braking recession, heavy commercial vehicles are often equipped with fluid auxiliary braking devices, such as hydraulic retarder. Hydraulic retarder can convert the vehicle’s kinetic energy to the fluid heat energy, which can enormously alleviate the main brake’s workload. The traditional hydraulic retarder can provide enough braking torque but has a delay during the braking. In this paper, a new type of magnetorheological fluid (MR fluid) hydraulic retarder is introduced by replacing the traditional fluid with magnetorheological fluid because of its linear braking torque and quick response. By changing the magnetic field intensity, it is easier to control the braking torque than the traditional hydraulic retarder. The rise of magnetorheological fluid temperature during the braking period will reduce the hydraulic retarder’s performance.
Technical Paper

Effect of Circumferential Magnetic Field on Braking Performance of a Direct Vane Magnetorheological Fluid Retarder

2019-04-02
2019-01-0342
The hydraulic retarder used in commercial vehicles can provide hydraulic damping to generate braking torque, reducing the pressure of the braking system on the slope section and increasing the safety. In this paper, the magnetorheological fluid with fast magnetic field reflection characteristics is used to increase the response speed of the hydraulic retarder, which can effectively reduce the response time of the hydraulic retarder. In this paper, the influence of the change of circumferential magnetic field on the braking torque of the magnetorheological fluid retarder is studied.
Technical Paper

Low Pumping Loss Hydraulic Retarder with Helium Circulation System

2015-09-29
2015-01-2801
The hydraulic retarder, an important auxiliary brake, has been widely used in heavy vehicles. Under the non-braking working condition, the air resistance torque in the working chamber, which is formed by the rotor of hydraulic retarder's stirring the air, causes pumping loss. This research designs a new type of hydraulic retarder, whose helium is charged into working chamber through closed loop gas system under non-braking working condition, can reduce the parasitic power loss of transmission system. First, under non-braking working condition, the resistance characteristics are analyzed on the base of hydraulic retarder pumping model; then, considering some parameters, such as the volume of chambers and the initial gas pressure, the working chamber gas charge model is established, and the transient gas charge characteristics are also analyzed under non-braking working condition.
X