Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Modeling Interior Noise due to Fluctuating Surface Pressures from Exterior flows

2012-06-13
2012-01-1551
There are many applications in which exterior flow over a structure is an important source for interior noise. In order to predict interior “wind noise” it is necessary to model both: (i) the spatial and spectral statistics of the exterior fluctuating surface pressures (across a broad frequency range) and (ii) the way in which these fluctuating surface pressures are transmitted through a structure and radiated as interior noise (across a broad frequency range). One approach to the former is to use an unsteady CFD model. While CFD is used routinely for external aerodynamics, its application to the characterization of exterior fluctuating surface pressures for broadband interior noise problems is relatively new. Accurate prediction of both the convective and acoustic wavenumber content of the flow across a broad frequency range can therefore present some challenges.
Technical Paper

Prediction of Sound Transmission through Door Seals Using the Hybrid FE-SEA Method

2010-10-17
2010-36-0531
During the last decades, the application of noise control treatments in vehicles has targeted the main noise transmission paths to interior noise. These paths include vehicle body panels such as dash panel, doors and floor. Many improvements have been achieved on these areas, and, as a consequence, other transmission paths once thought as secondary became relevant. This is the case of the sound transmission through door seals and others sealing elements at mid and high frequencies. In this paper, the interest lies on the prediction of the transmission loss of door seals. A full nonlinear deformation/contact analysis is used to estimate the deformed geometry of a door seal in real conditions. The geometry is then used in a vibro-acoustic analysis to predict the in-situ transmission loss of the seal using a local Hybrid FE-SEA model. The channel between the door and the car structure where the seal is located is also included in the analysis.
Technical Paper

Numerical Investigation of the Transmission Loss of Seals and Slits for Airborne SEA Predictions

2009-05-19
2009-01-2205
Seals and slits are often an important transmission path for vehicle interior noise at mid and high frequencies, and they are therefore often included in system level SEA models of interior noise. The transmission loss of seals and slits in such models is typically either measured experimentally or predicted using simple analytical models. The problem with the former is that it is expensive to investigate different design options using test; the problem with the latter is that simple analytical models often do not contain enough detail. The objective of this paper is therefore to investigate how much detail is needed in order to predict the transmission loss of typical slits and seals. Typical door seals are not directly exposed to exterior and interior sound fields, but instead are inserted in complicated “channel” sections formed by the door and pillar or rail structures. This study is therefore divided in two parts.
Technical Paper

RECENT ADVANCES IN AUTOMOTIVE INTERIOR NOISE PREDICTION

2008-03-30
2008-36-0592
This paper describes a number of recent advances in the prediction of automotive interior noise. A brief review of existing modeling methods is given. Recent advances are then discussed in the following areas: (i) low frequency FE models, (ii) airborne SEA models, (iii) structure-borne SEA models and (iv) the use of CFD for source modeling.
X