Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

High-Speed Thermographic Analysis of Diesel Injector Nozzle Tip Temperature

2022-03-29
2022-01-0495
The temperature of fuel injectors can affect the flow inside nozzles and the subsequent spray and liquid films on the injector tips. These processes are known to impact fuel mixing, combustion and the formation of deposits that can cause engines to go off calibration. However, there is a lack of experimental data for the transient evolution of nozzle temperature throughout engine cycles and the effect of operating conditions on injector tip temperature. Although some measurements of engine surface temperature exist, they have relatively low temporal resolutions and cannot be applied to production injectors due to the requirement for a specialist coating which can interfere with the orifice geometry. To address this knowledge gap, we have developed a high-speed infrared imaging approach to measure the temperature of the nozzle surface inside an optical diesel engine.
Technical Paper

Nozzle Flow Simulation of GDi for Measuring Near-Field Spray Angle and Plume Direction

2019-04-02
2019-01-0280
Experimental visualization of current gasoline direct injection (GDi) systems are even more complicated especially due to the proximity of spray plumes and the interaction between them. Computational simulations may provide additional information to understand the complex phenomena taking place during the injection process. Nozzle flow simulations with a Volume-of-Fluid (VOF) approach can be used not only to analyze the flow inside the nozzle, but also the first 2-5 mm of the spray. A methodology to obtain plume direction and spray angle from the simulations is presented. Results are compared to experimental data available in the literature. It is shown that plume direction is well captured by the model, whilst the uncertainty of the spray angle measurements does not allow to clearly validate the developed methodology.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Technical Paper

An Experimental Approach in the Impact of Electric Fields on Liquid Fuel Spray Injection

2013-04-08
2013-01-1607
This publication is the result of a multidisciplinary collaboration between the academia and the industry. An attempt to pre-ionize and influence the trajectory and the fluid mechanics of the injected fuel into an experimental injection system by means of electromagnetic fields was made. This collaboration project started from research proposal, which aims at exploring the effects of a highly ionized environment on the fuel injection event and how the momentum of the injected fuel droplets may be affected by the electromagnetic fields in form of quantified variables, such as spray penetration, spreading angle and the spray axis angle. An influence of the applied electromagnetic field on the fuel spray depending on the electrode configuration was observed and is presented and discussed in this publication.
Technical Paper

Schlieren Measurements of the ECN-Spray A Penetration under Inert and Reacting Conditions

2012-04-16
2012-01-0456
In the wake of the Turbulent Nonpremixed Flames group (TNF) for atmospheric pressure flames, an open group of laboratories belonging to the Engine Combustion Network (ECN) agreed on a list of boundary conditions -called “Spray A”- to study the free diesel spray under steady-state conditions. Such conditions are relevant of a diesel engine operating at low temperature combustion conditions with moderate EGR, small nozzle and high injection pressure. The objective of this program is to accelerate the understanding of diesel flames, by applying each laboratory's knowledge and skills to a specific set of boundary conditions, in order to give an extensive and reliable experimental database to help spray modeling. In the present work, “Spray A” operating condition has been achieved in a constant pressure, continuous flow vessel. Schlieren high-speed imaging has been conducted to measure the spray penetration under evaporative conditions.
X