Refine Your Search

Topic

null

Search Results

Standard

Recommended Practice for Measuring Fuel Consumption and Range of Fuel Cell and Hybrid Fuel Cell Vehicles Fueled by Compressed Gaseous Hydrogen

2024-02-06
J2572_202402
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing.
Standard

Hydrogen Surface Vehicle to Station Communications Hardware and Software

2023-08-03
WIP
J2799
This standard specifies the communications hardware and software requirements for fueling hydrogen surface vehicles (HSV), such as fuel cell vehicles, but may also be used where appropriate, with heavy-duty vehicles (e.g., busses) and industrial trucks (e.g., forklifts) with compressed hydrogen storage. It contains a description of the communications hardware and communications protocol that may be used to refuel the HSV. The intent of this standard is to enable harmonized development and implementation of the hydrogen fueling interfaces.This standard is intended to be used in conjunction with the hydrogen fueling protocols in SAE J2601 and J2601/5, and nozzles and receptacles conforming with SAE J2600.
Standard

Recommended Practice for General Fuel Cell Vehicle Safety

2023-01-09
J2578_202301
This SAE Recommended Practice identifies and defines requirements relating to the safe integration of the fuel cell system, the hydrogen fuel storage and handling systems (as defined and specified in SAE J2579) and high voltage electrical systems into the overall Fuel Cell Vehicle. The document may also be applied to hydrogen vehicles with internal combustion engines. This document relates to the overall design, construction, operation and maintenance of fuel cell vehicles.
Standard

Application Guideline for Use of Hydrogen Quality Specification

2022-11-02
J2719/1_202211
This SAE Information Report is intended to be used for routine (or periodic) monitoring of filling station performance. It is not intended to provide process quality control requirements for any portion of the product delivery cycle.
Standard

Fueling Protocol for Gaseous Hydrogen Powered Industrial Trucks

2022-09-16
J2601/3_202209
This document establishes safety limits and performance requirements for gaseous hydrogen fuel dispensers used to fuel Hydrogen Powered Industrial Trucks (HPITs). It also describes several example fueling methods for gaseous hydrogen dispensers serving HPIT vehicles. SAE J2601-3 offers performance based fueling methods and provides guidance to fueling system builders as well as suppliers of hydrogen powered industrial trucks and operators of the hydrogen powered vehicle fleet(s). This fueling protocol for HPITs can support a wide range of hydrogen fuel cell hybrid electric vehicles including fork lifts, tractors, pallet jacks, on and off road utility, and specialty vehicles of all types. The mechanical connector geometry for H25 and H35 connectors are defined in SAE J2600 Compressed Hydrogen Surface Vehicle Refueling Connection Devices.
Standard

Hydrogen Fuel Quality Screening Test of Chemicals for Fuel Cell Vehicles

2022-06-13
J3219_202206
The outcome of this TIR is to establish proton exchange membrane (PEM) testing methods and characterization of chemicals used in HRS, during operation and maintenance that can influence the performance of commercial PEM fuel cell vehicles. Hydrogen quality standards such as SAE J2719 provide list of contaminants with maximum impurity levels that ensure safe operation of fuel cell vehicles. These contaminants are primarily from the hydrogen production. Less attention in these quality standards were given to the contaminants generated from the installation, operation and maintenance of HRS. Common chemicals used during HRS operation are refrigerants, lubricants, etc., and during HRS installation and maintenance are solvents cleaning agents, lubricants, etc. Some of these chemicals are found to have adverse impacts on PEM fuel cells.
Standard

Hydrogen Surface Vehicle to Station Communications Hardware and Software

2019-12-13
J2799_201912
This standard specifies the communications hardware and software requirements for fueling hydrogen surface vehicles (HSV), such as fuel cell vehicles, but may also be used where appropriate, with heavy-duty vehicles (e.g., busses) and industrial trucks (e.g., forklifts) with compressed hydrogen storage. It contains a description of the communications hardware and communications protocol that may be used to refuel the HSV. The intent of this standard is to enable harmonized development and implementation of the hydrogen fueling interfaces. This standard is intended to be used in conjunction with the hydrogen fueling protocols in SAE J2601 and nozzles and receptacles conforming with SAE J2600.
Standard

Gaseous Hydrogen and Fuel Cell Vehicle First and Second Responder Recommended Practice

2019-12-02
WIP
J2990/1
Electric and alternative fueled vehicles present different hazards for first and second responders than conventional gasoline internal combustion engines. Hydrogen vehicles (H2V) including Fuel Cell Vehicles (FCVs) involved in incidents may present unique hazards associated with the fuel storage and high voltage systems. The electrical hazards associated with the high voltage systems of hybrid-electric vehicles and FCVs are already addressed in the parent document, SAE J2990. This Recommended Practice therefore addresses electric issues by reference to SAE J2990 and supplements SAE J2990 to address the potential consequences associated with hydrogen vehicle incidents and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
Standard

Standard for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles

2018-06-15
J2579_201806
The purpose of this document is to define design, construction, operational, and maintenance requirements for hydrogen fuel storage and handling systems in on-road vehicles. Performance-based requirements for verification of design prototype and production hydrogen storage and handling systems are also defined in this document. Complementary test protocols (for use in type approval or self-certification) to qualify designs (and/or production) as meeting the specified performance requirements are described. Crashworthiness of hydrogen storage and handling systems is beyond the scope of this document. SAE J2578 includes requirements relating to crashworthiness and vehicle integration for fuel cell vehicles. It defines recommended practices related to the integration of hydrogen storage and handling systems, fuel cell system, and electrical systems into the overall Fuel Cell Vehicle.
Standard

Compressed Hydrogen Surface Vehicle Fueling Connection Devices

2017-09-28
WIP
J2600
SAE J2600 applies to the design and testing of Compressed Hydrogen Surface Vehicle (CHSV) fueling connectors, nozzles, and receptacles. Connectors, nozzles, and receptacles must meet all SAE J2600 requirements and pass all SAE J2600 testing to be considered as SAE J2600 compliant. This document applies to devices which have Pressure Classes of H11, H25, H35, H50 or H70. 1.1 Purpose SAE J2600 is intended to: • Prevent vehicles from being fueled with a Pressure Class greater than the vehicle Pressure Class; • Allow vehicles to be fueled with Pressure Class equal to or less than the vehicle Pressure Class, • Prevent vehicles from being fueled by other compressed gases dispensing stations; • Prevent other gaseous fueled vehicles from being fueled by hydrogen dispensing stations.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles

2016-12-06
J2601_201612
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light duty vehicles. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
Standard

Gaseous Hydrogen and Fuel Cell Vehicle First and Second Responder Recommended Practice

2016-06-03
J2990/1_201606
Electric and alternative fueled vehicles present different hazards for first and second responders than conventional gasoline internal combustion engines. Hydrogen vehicles (H2V) including Fuel Cell Vehicles (FCVs) involved in incidents may present unique hazards associated with the fuel storage and high voltage systems. The electrical hazards associated with the high voltage systems of hybrid-electric vehicles and FCVs are already addressed in the parent document, SAE J2990. This Recommended Practice therefore addresses electric issues by reference to SAE J2990 and supplements SAE J2990 to address the potential consequences associated with hydrogen vehicle incidents and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
Standard

Hydrogen Fuel Quality for Fuel Cell Vehicles

2015-11-11
J2719_201511
This Standard provides background information and a hydrogen fuel quality standard for commercial proton exchange membrane (PEM) fuel cell vehicles. This Report also provides background information on how this standard was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee.
Standard

Recommended Practice for Measuring Fuel Consumption and Range of Fuel Cell and Hybrid Fuel Cell Vehicles Fueled by Compressed Gaseous Hydrogen

2014-10-16
J2572_201410
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing.
Standard

Fueling Protocol for Gaseous Hydrogen Powered Heavy Duty Vehicles

2014-09-24
J2601/2_201409
The purpose of this document is to provide performance requirements for hydrogen dispensing systems used for fueling 35 MPa heavy duty hydrogen transit buses and vehicles (other pressures are optional). This document establishes the boundary conditions for safe heavy duty hydrogen surface vehicle fueling, such as safety limits and performance requirements for gaseous hydrogen fuel dispensers used to fuel hydrogen transit buses. For fueling light-duty vehicles SAE J2601 should be used. SAE J2601-2 is a performance based protocol document that also provides guidance to fueling system builders, manufacturers of gaseous hydrogen powered heavy duty transit buses, and operators of the hydrogen powered vehicle fleet(s). This fueling protocol is suitable for heavy duty vehicles with a combined vehicle CHSS capacity larger than 10 kilograms aiming to support all practical capacities of transit buses.
Standard

Recommended Practice for General Fuel Cell Vehicle Safety

2014-08-26
J2578_201408
This SAE Recommended Practice identifies and defines requirements relating to the safe integration of the fuel cell system, the hydrogen fuel storage and handling systems (as defined and specified in SAE J2579) and high voltage electrical systems into the overall Fuel Cell Vehicle. The document may also be applied to hydrogen vehicles with internal combustion engines. This document relates to the overall design, construction, operation and maintenance of fuel cell vehicles.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles

2014-07-15
J2601_201407
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light duty vehicles. These process limits (including fuel temperature, the maximum fuel flow rate, and rate of pressure increase and end pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601-2014 establishes standard fueling protocols based on a look-up table approach with performance targets. The current standard is table-based and provides concise performance targets for both communications and non-communications fueling as described in Sections 7 through 10. An important factor in the performance of hydrogen fueling is the station’s dispensing equipment cooling capability and the resultant fuel delivery temperature “T” rating. SAE J2601 has a reference fueling target of 3 minutes with 95-100% SOC (with communications) with a T40 rated dispenser as specified in section 6.1.
Standard

Hydrogen Surface Vehicle to Station Communications Hardware and Software

2014-04-09
J2799_201404
This standard specifies the communications hardware and software requirements for fueling Hydrogen Surface Vehicles (HSV), such as fuel cell vehicles, but may also be used where appropriate, with heavy duty vehicles (e.g., busses) and industrial trucks (e.g., forklifts) with compressed hydrogen storage. It contains a description of the communications hardware and communications protocol that may be used to refuel the HSV. The intent of this standard is to enable harmonized development and implementation of the hydrogen fueling interfaces. This standard is intended to be used in conjunction with the hydrogen fueling protocol, SAE J2601, Compressed Hydrogen Light Duty Vehicle Fueling Protocol and SAE J2600, Compressed Hydrogen Surface Vehicle Fueling Connection Devices.
Standard

Recommended Practice for Electric, Fuel Cell and Hybrid Electric Vehicle Crash Integrity Testing

2014-01-10
J1766_201401
Electric, Fuel Cell and Hybrid vehicles may contain many types of high voltage systems. Adequate barriers between occupants and the high voltage systems are necessary to provide protection from potentially harmful electric current and materials within the high voltage system that can cause injury to occupants of the vehicle during and after a crash. This SAE Recommended Practice is applicable to Electric, Fuel Cell and Hybrid vehicle designs that are comprised of at least one vehicle propulsion voltage bus with a nominal operating voltage greater than 60 and less than 1,500 VDC, or greater than 30 and less than 1,000 VAC. This Recommended Practice addresses post-crash electrical safety, retention of electrical propulsion components and electrolyte spillage.
Standard

Fueling Protocol for Gaseous Hydrogen Powered Industrial Trucks

2013-06-12
J2601/3_201306
This document establishes safety limits and performance requirements for gaseous hydrogen fuel dispensers used to fuel Hydrogen Powered Industrial Trucks (HPITs). It also describes several example fueling methods for gaseous hydrogen dispensers serving HPIT vehicles. SAE J2601-3 offers performance based fueling methods and provides guidance to fueling system builders as well as suppliers of hydrogen powered industrial trucks and operators of the hydrogen powered vehicle fleet(s). This fueling protocol for HPITs can support a wide range of hydrogen fuel cell hybrid electric vehicles including fork lifts, tractors, pallet jacks, on and off road utility, and specialty vehicles of all types. The mechanical connector geometry for H25 and H35 connectors are defined in SAE J2600 Compressed Hydrogen Surface Vehicle Refueling Connection Devices.
X