Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Optimization of Vehicle Performances Using Dynamic Models with Two Steps

2015-03-10
2015-01-0028
This paper presents an industrial application of the Analytical Target Cascading (ATC) methodology to the optimal design of commercial vehicle steering and suspension system. This is a pilot study about the suspension and steering design of a semi medium bus, whose objective is to develop and introduce an ATC methodology to an automobile development process. In the conventional process, it is difficult not only to find design variables which meet the target of Ride and Handling (R&H) performance using a detailed full car model, but also to figure out the interrelation between the vehicle and its subsystems. In this study, ATC methodology is used in order to obtain the optimal values such as geometric characteristics satisfying both the vehicle's R&H target and the subsystem (suspension and steering system) 's target.
Technical Paper

Body Optimization for Front Loading Design Process

2014-04-01
2014-01-0388
An innovative design process is proposed to be applicable in the early conceptual design phase as a means of front loading design. The objective of the study is to minimize trial and errors in the detailed design phase and to shorten the overall design period. The process includes design optimization which is based on efficient modeling techniques. An integrated CAD/CAE modeling method and a simplified quality FE model are key factors in the course of effectuation. The conceptual modeling takes into account the adaptability of computer-generated models with the use of CAD/CAE integrated design environment. To achieve maximum efficiency in the repeated computations in optimization, an FE modeling approach is introduced in terms of simplicity and quality. The proposed FE modeling employs beam and spring elements to construct vehicle body models, which is targeted to produce an instant analysis result with a robust conceptual design at the incipient phase of development.
Technical Paper

Numerical Simulation on the Raindrop Transportation in the Turbulent Flow Field of the Heavy-Duty Intake System

2006-04-03
2006-01-1191
In this study, two-phase flow simulations have been performed for the intake system of a commercial truck. The intake duct, which is the first component in heavy-duty engine, is located in the upper side of a cabin. The flow in the intake system is a typical two-phase flow with the air as the continuous phase and the water as the dispersed phase during rainy weather. The numerical two-phase simulation is performed by using the Largrangian model as implemented in STAR-CD. The influence of the water droplets on the airflow as well as droplet break-up and interactions of the droplets with the walls can be taken into account. Two and three cyclone model inside the intake system have been investigated by numerical simulations. The computational results can be used to get a better understanding of the physics of the flow inside the intake system and to optimize the water separation.
X