Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Design of a Water Electrolysis Flight Experiment

1993-07-01
932087
Supply of oxygen (O2) and hydrogen (H2) by electrolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missions. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. Life Systems, Inc., in conjunction with NASA, has been developing an alkaline-based Static Feed Electrolyzer (SFE). During the development of the water electrolysis technology over the past 23 years, an extensive engineering and scientific data base has been assembled.
Technical Paper

Portable Life Support System Regenerative Carbon Dioxide and Water Vapor Removal by Metal Oxide Absorbents Preprototype Hardware Development and Testing

1992-07-01
921299
The use of metal oxide absorbents in a portable life support system (PLSS) for regenerative removal of both CO2 and H2O vapor is the focus of an ongoing NASA program. This program addresses the rigorous extravehicular activity (EVA) requirements for Space Station Freedom and future long-duration missions. The concurrent removal of CO2 and H2O vapor can simplify the PLSS by combining the CO2 removal and humidity control functions in one component. A further benefit is that the reversible gas/solid chemical reaction of the removal processes permits a regenerative component that does not vent to space. Recently a preprototype full-scale metal oxide carbon dioxide and humidity remover (MOCHR) and a regeneration module were delivered to NASA Johnson Space Center (JSC). Prior to delivery, preliminary testing of the MOCHR and regeneration module was conducted at AiResearch.
Technical Paper

Characterization of Metal Oxide Absorbents for Regenerative Carbon Dioxide and Water Vapor Removal for Advanced Portable Life Support Systems

1990-07-01
901431
In several previous studies, metal-oxide-based absorbents have been investigated as a regenerative means of removal of carbon dioxide (CO2) from recycled breathing gas in an astronaut portable life support system (PLSS). In most cases, the significant effect of water vapor on the successful absorption of CO2 was noted. Under an ongoing NASA-funded program, parametric studies have been conducted to characterize the performance of a silver-oxide-based absorbent, developed by Allied-Signal researchers, in terms of its ability to remove both gaseous CO2 and water vapor. This phenomenon is highly desirable and could lead to a much simplified PLSS. These studies included an investigation of the effects of preconditioning the absorbent, the effects of cooling the absorbent bed, and the impact of various levels of inlet CO2 and water vapor partial pressures.
Technical Paper

Development of an Advanced Solid Amine Humidity and CO2 Control System for Potential Space Station Extravehicular Activity Application

1988-07-01
881062
The Extravehicular Activity (EVA) operations for Space Station (SS) require that a regenerable carbon dioxide (CO2) absorber be developed for the manned Extravehicular Mobility Unit (EMU). A concept which employs a solid amine resin to remove metabolic CCL and water vapor from the breathing air within the space suit is being developed by the Hamilton Standard Division of United Technologies Corporation under Contract NAS 9-17480 with the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC). The solid amine is packed within a water cooled metal foam matrix heat exchanger to remove the exothermic heat of chemical reaction. After completion of the EVA mission, the amine is regenerated on board the Space Station within the heat exchanger using a combination of heat and vacuum. This paper describes the concept design features, operational considerations and test results during simulated laboratory conditions.
Technical Paper

Development of a Regenerate Humidity and CO2 Control System for an Advanced EMU

1987-07-01
871471
A five hour regenerate, nonventing Humidity and CO2 Control Subsystem (HCCS) technology demonstration unit is being developed for potential use in an Advanced Extravehicular Mobility Unit (AEMU) for Space Station application. The HCCS incorporates a weak base anion exchange resin packed in a metal foam matrix heat exchanger. This system simultaneously removes CO2 and water vapor with the resulting exothermic heat of reaction rejected to the heat exchanger. The system has no moving parts resulting in a highly reliable, simple configuration. Regeneration may be accomplished via internal heating and vacuum.
Technical Paper

An Advanced Carbon Reactor Subsystem for Carbon Dioxide Reduction

1986-07-14
860995
Reduction of metabolic carbon dioxide is one of the essential steps in physiochemical air revitalization for long-duration manned space missions. Under contract with NASA Johnson Space Center, Hamilton Standard is developing an Advanced Carbon Reactor Subsystem (ACRS) to produce water and dense solid carbon from carbon dioxide and hydrogen. The ACRS essentially consists of a Sabatier Methanation Reactor (SMR) to reduce carbon dioxide with hydrogen to methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolyze methane to carbon and hydrogen. The hydrogen is recycled to the SMR, while the produce carbon is periodically removed from the CFR. The SMR is well-developed, while the CFR is under development. In this paper, the fundamentals of the SMR and CFR processes are presented and results of Breadboard CFR testing are reported.
Technical Paper

Development Status of Regenerable Solid Amine CO2 Control Systems

1985-07-01
851340
Recent development of the solid amine/water desorbed (SAWD) CO2 control system technology has resulted in two preprototype systems. The SAWD I system was developed under NASA Contract NAS9-13624 and is currently under test in the NASA Johnson Space Center, Crew Systems Division Advanced Environmental Control Systems (ECS) Laboratory. The SAWD II system is being developed at Hamilton Standard Division of United Technologies (HSD) under NASA Contract NAS9-16978. This paper reviews the development history of solid amine CO2 control systems and describes the SAWD I and SAWD II systems. In the development of the SAWD II system, special attention was given to reducing its power requirements and to designing the system to be compatible with zero-gravity operation. Energy saving features are discussed, and the zero-gravity solid amine canister test program and selected design are described.
Technical Paper

A Study of Sabatier Reactor Operation in Zero “G”

1984-07-01
840936
The Sabatier reactor is an exothermic, heterogeneous catalytic reactor that has the function of reducing carbon dioxide to methane and water vapor. Sabatier reactor operation is affected by gravity through the effects of buoyant forces. The buoyant forces affect the transfer of heat and can be significant in determining the temperatures of the various portions of the reactor. The temperatures then affect the fundamental processes such as the chemical reaction rate. This paper presents the results of zero “G” computer model simulations of Sabatier reactor operation. Groundbase experiments were made for various manned loadings under normal ambient and gravity (l-G) conditions and were correlated with normal gravity simulations. The zero “G” simulations show the reactor will run significantly hotter in a zero “G” environment if cooling air flow is not increased to compensate for the loss of natural convections.
Technical Paper

Integrated Atmosphere Revitalization System Description and Test Results

1983-07-11
831110
Regenerative-type subsystems are being tested at JSC to provide atmosphere revitalization functions of oxygen supply and carbon dioxide (CO2) removal for a future Space Station. Oxygen is supplied by an electrolysis subsystem, developed by General Electric, Wilmington, Mass., which uses the product water from either the CO2 reduction subsystem or a water reclamation process. CO2 is removed and concentrated by an electrochemical process, developed by Life Systems, Inc., Cleveland, Ohio. The concentrated CO2 is reduced in a Sabatier process with the hydrogen from the electrolysis process to water and methane. This subsystem is developed by Hamilton Standard, Windsor Locks, Conn. These subsystems are being integrated into an atmosphere revitalization group. This paper describes the integrated test configuration and the initial checkout test. The feasibility and design compatibility of these subsystems integrated into an air revitalization system is discussed.
Technical Paper

A Regenerable Solid Amine CO2 Concentrator for Space Station

1982-02-01
820847
A regenerable solid amine CO2 control system, which employs water vapor for desorption, is being developed for potential use on long duration space missions. During cyclic operation, CO2 is first absorbed from the cabin atmosphere onto the granular amine. Steam is then used to heat the solid amine bed and desorb the CO2. This paper describes the solid amine system operation and application to the Shuttle Orbiter, Manned Space Platform (MSP) and Space Operations Center (SOC). The importance and interplay of system performance parameters are presented together with supporting data and design characteristics.
X