Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to DO-178C

2024-11-18
This two-day course will introduce participants to industry best practices for real-world software development and how to avoid common DO-178C mistakes. This course is intended to present the information necessary to help minimize DO-178C risks and costs, while also maximizing software quality during avionics development.  The instructor will guide participants through topics such as aircraft safety, systems, software planning, software requirements, and software design/code/test.  
Training / Education

Photogrammetry and Analysis of Digital Media

2024-08-28
Photographs and video recordings of vehicle crashes and accident sites are more prevalent than ever, with dash mounted cameras, surveillance footage, and personal cell phones now ubiquitous. The information contained in these pictures and videos provide critical information to understanding how crashes occurred, and  analyze physical evidence. This course teaches the theory and techniques for getting the most out of digital media, including correctly processing raw video and photographs, correcting for lens distortion, and using photogrammetric techniques to convert the information in digital media to usable scaled three-dimensional data.
Training / Education

Development and Practice of Airborne Electronic Hardware Based on DO-254

2024-08-27
This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Participants in this course comprehensive understanding of the DO-254 standard including how the development of airborne electronic hardware (AEH) and the development of the aircraft system are related. It addresses the key objectives, activities, and generated data of the AEH lifecycle and presents common problems in the application of DO-254 and how to prevent them. This course also includes current AEH certification requirements and interprets some of the difficulties in gaining compliance approval.
Technical Paper

Automated AI-based Annotation Framework for 3D Object Detection from LIDAR Data in Industrial Areas.

2024-07-02
2024-01-2999
Autonomous Driving is being utilized in various settings, including indoor areas such as industrial halls. Additionally, LIDAR sensors are currently popular due to their superior spatial resolution and accuracy compared to RADAR, as well as their robustness to varying lighting conditions compared to cameras. They enable precise and real-time perception of the surrounding environment. Several datasets for on-road scenarios such as KITTI or Waymo are publicly available. However, there is a notable lack of open-source datasets specifically designed for industrial hall scenarios, particularly for 3D LIDAR data. Furthermore, for industrial areas where vehicle platforms with omnidirectional drive are often used, 360° FOV LIDAR sensors are necessary to monitor all critical objects. Although high-resolution sensors would be optimal, mechanical LIDAR sensors with 360° FOV exhibit a significant price increase with increasing resolution.
Technical Paper

Simulating Cloud Environments of Connected Vehicles for Anomaly Detection

2024-07-02
2024-01-2996
The emergence of connected vehicles is driven by increasing customer and regulatory demands. To meet these, more complex software applications, some of which require service-based cloud and edge backends, are developed. Due to the short lifespan of software, it becomes necessary to keep these cloud environments and their applications up to date with security updates and new features. However, as new behavior is introduced to the system, the high complexity and interdependencies between components can lead to unforeseen side effects in other system parts. As such, it becomes more challenging to recognize whether deviations to the intended system behavior are occurring, ultimately resulting in higher monitoring efforts and slower responses to errors. To overcome this problem, a simulation of the cloud environment running in parallel to the system is proposed. This approach enables the live comparison between simulated and real cloud behavior.
Technical Paper

FMCW Lidar Simulation with Ray Tracing and Standardized Interfaces

2024-07-02
2024-01-2977
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment.
Technical Paper

Design of an Alternative Hardware Abstraction Layer for Embedded Systems with Time-Controlled Hardware Access

2024-07-02
2024-01-2989
This paper proposes a novel approach to the design of a Hardware Abstraction Layer (HAL) specifically tailored to embedded systems, placing a significant emphasis on time-controlled hardware access. The general concept and utilization of a HAL in industrial projects are widespread, serving as a well-established method in embedded systems development. HALs enhance application software portability, simplify underlying hardware usage by abstracting its inherent complexity and reduce overall development costs through software reusability. Beyond these established advantages, this paper introduces a conceptual framework that addresses critical challenges related to debugging and mitigates input-related problems often encountered in embedded systems. This becomes particularly pertinent in the automotive context, where the intricate operational environment of embedded systems demands robust solutions. The HAL design presented in this paper mitigates these issues.
Technical Paper

Design of a Decentralized Control Strategy for CACC Systems accounting for Uncertainties

2024-06-12
2024-37-0010
Traditional CACC systems utilize inter-vehicle wireless communication to maintain minimal yet safe inter-vehicle distances, thereby improving traffic efficiency. However, introducing communication delays generates system uncertainties that jeopardize string stability, a crucial requirement for robust CACC performance. To address these issues, we introduce a decentralized Model Predictive Control (MPC) approach that incorporates Kalman Filters and state predictors to counteract the uncertainties posed by noise and communication delays. We validate our approach through MATLAB Simulink simulations, using stochastic and mathematical models to capture vehicular dynamics, Wi-Fi communication errors, and sensor noises. In addition, we explore the application of a Reinforcement Learning (RL)-based algorithm to compare its merits and limitations against our decentralized MPC controller, considering factors like feasibility and reliability.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Training / Education

DO-178C Advanced Training

2024-06-12
This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Participants deepen the understanding of the standard and build on how software engineers, inspectors, and DERs can comply with the standard's objectives. Practitioners engage with the implications and rationales of DO-178C in order to effectively tackle real worked applications.
Training / Education

Introduction to Highly Automated Vehicles

2024-06-10
This course highlights the technologies enabling ADAS and how they integrate with existing passive occupant crash protection systems, how ADAS functions perceive the world, make decisions, and either warn drivers or actively intervene in controlling the vehicle to avoid or mitigate crashes. Examples of current and future ADAS functions, and various sensors utilized in ADAS, including their operation and limitations, and sample algorithms, will be discussed and demonstrated. The course utilizes a combination of hands-on activities, including computer simulations, discussion and lecture.
Technical Paper

A Non-Intrusive Approach for Measuring Data and Control Coupling b/w Software Components: Addressing the Challenges of DO-178C Compliance, Verification and Certification

2024-06-01
2024-26-0464
Software certification guidelines, such as RTCA DO-178C, mandate the analysis of data and control coupling (DC/CC) in safety-critical avionics software using requirement-based testing. The intention of this analysis is to ensure correctness in the interactions and dependencies between software components. The shift from confirming the coupling (as in DO-178B) to verifying the exercising of the coupling (as introduced in DO-178C) transitions the DC/CC objective from an analytical exercise against the test design to a measurement exercise against the test execution. Current methodologies for measuring Data Coupling and Control Coupling (DC/CC) rely on source code instrumentation, which embeds code to record coverage information during requirements-based testing. However, this approach has significant drawbacks. Primarily, it necessitates executing tests on both the instrumented and non-instrumented versions of the code, ensuring their outputs match.
Technical Paper

Velocity Estimation of a Descending Spacecraft in Atmosphereless Environment using Deep Learning

2024-06-01
2024-26-0484
Landing of spacecraft on Lunar or Martian surfaces is the last and critical step in inter planetary space missions. The atmosphere on earth is thick enough to slow down the craft but Moon or Mars does not provide a similar atmosphere. Moreover, other factors such as lunar dust, availability of precise onboard navigational aids etc would impact decision making. Soft landing meaning controlling the velocity of the craft from over 6000km/h to zero. If the craft’s velocity is not controlled, it might crash. Various onboard sensors and onboard computing power play a critical role in estimating and hence controlling the velocity, in the absence of GPS-like navigational aids. In this paper, an attempt is made using visual onboard sensor to estimate the velocity of the object. The precise estimation of an object's velocity is a vital component in the trajectory planning of space vehicles, particularly those designed for descent onto lunar or Martian terrains, such as orbiters or landers.
Technical Paper

Design and Development of Terminal Velocity Measurement System for Descending Modules

2024-06-01
2024-26-0438
Gaganyaan programme is India's prestigious human space exploration endeavour. During the re-entry of the spacecraft, achieving the minimum terminal velocity is paramount to ensure the crew's safety upon landing. Therefore, acquiring accurate in-flight velocity data is essential for comprehensively understanding the landing dynamics and facilitating post-flight data analysis and validation. Moreover, terminal velocity plays a pivotal role in the qualification of parachute systems during platform-drop tests where the objective is to minimize the terminal velocity for safe impact. Terminal velocity also serves as a critical design parameter for the crew seat attenuation system. In addition to terminal velocity, it is equally necessary to characterize the horizontal velocities acting on the decelerating body due to various factors such as parachute sway and wind drift. This data also plays a central role in refining our systems for future enhancements.
Technical Paper

CFD Methodology Development to Predict Lubrication Effectiveness in Electromechanical Actuators

2024-06-01
2024-26-0466
Electromechanical actuators (EMAs) play a crucial role in aircraft electrification, offering advantages in terms of aircraft-level weight, rigging and reliability compared to hydraulic actuators. To prevent backdriving, skewed roller braking devices called "no-backs" are employed to provide braking torque. These technology components are continuing to be improved with analysis driven design innovations eg. U.S. Pat. No. 8,393,568. The no-back mechanism has the rollers skewed around their own transverse axis that allow for a combination of rolling and sliding against the stator surfaces. This friction provides the necessary braking torque that prevents the backdriving. By controlling the friction radius and analyzing the Hertzian contact stresses, the brake can be sized for the desired duty cycle. No-backs can be configured to provide braking torque for both tensile and compressive backdriving loads.
X