Refine Your Search

Topic

Search Results

Standard

Heater and Accessories, Aircraft Internal Combustion Heat Exchanger Type

2023-05-10
WIP
AS8040D
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a. Cabin heating (all occupied regions and windshield heating) b. Wing and empennage anti-icing c. Engine and accessory heating (when heater is installed as part of the aircraft) d. Aircraft deicing
Standard

Environmental Control Systems (ECS) for UA (Unmanned Aircraft)

2022-06-24
WIP
AIR7063
This document provides guidance for establishing ECS for UA by primarily referencing existing AC-9 documents that apply with some indication how they need to be adapted. The document primarily addresses cooling requirements for UA equipment. Limited information is provided for ECS requirements for future UA that may carry passengers. The document does not intend to provide detail design guidance for all types of UA. This document only provides guidance related to environmental control of onboard equipment, cargo and possible animals and passengers. It does not pertain to the related ground stations that may be controlling the UA.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2022-03-21
WIP
ARP699F
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Electrical and Electronic Equipment Cooling in Commercial Transports

2021-08-10
CURRENT
AIR64C
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. Instances where these two locations result in different requirements are identified. This document generally refers to the cooled equipment as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. The primary focus of this document is E/E equipment which uses forced air cooling to keep the equipment within acceptable environmental limits. These limits ensure the equipment operates reliably and within acceptable tolerances. Cooling may be supplied internally or externally to the E/E equipment case. Some E/E equipment is cooled solely by natural convection, conduction, and radiation to the surrounding environment.
Standard

Airborne Chemicals in Aircraft Cabins

2021-06-22
CURRENT
AIR4766/2A
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: Origins of chemical airborne contaminants during routine operating and failure conditions. Exposure control measures, including design, maintenance, and worker training/education. This AIR does not deal with airflow requirements.
Standard

Aircraft Humidification

2021-01-14
CURRENT
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Fault Isolation in Environmental Control Systems of Commercial Transports

2021-01-12
CURRENT
AIR1266B
This SAE Aerospace Information Report (AIR) outlines concepts for the design and use of fault isolation equipment that have general application. The specific focus is on fault isolation of environmental control systems (ECS) in commercial transports. Presented are general fault isolation purposes, design principles, and demonstration of compliance criteria. These are followed by three design examples to aid in understanding the design principles. Future trends in built-in-test-equipment (BITE) design are discussed, some of which represent concepts already being implemented on new equipment.
Standard

Animal Environment in Cargo Compartments

2019-06-05
WIP
AIR1600B
The environmental factors of prime importance in the transport of animals in aircraft are air temperature, humidity and carbon dioxide concentration, and of course space (or volume) limitations. Secondary factors are air velocity, noise, lighting, etc. Pressure isnot addressed herein as pressure levels and rates of change are totally dictated by human occupancy requirements. Some basic governmental documents, such as References 1, 2 and 3, define overall requirements for animal transportation, but with very limited data on environmental requirements. Reference 4 gives some airplane characteristics measured during animal transportation from the USA to foreign destinations. Temperature and humidity profiles are indicative of airplane characteristics. This report presents information on the temperature, humidity, ventilation, and carbon dioxide limitations and the metabolic heat release rates for animals which will allow the determination of the environment required by th animals.
Standard

Air Quality for Commercial Aircraft Cabin Particulate Contaminants

2018-10-17
WIP
AIR4766/1A
This SAE Aerospace Information Report (AIR) covers airbone particulate contaminants that may be present in commercial aircraft cabin air during operation. Discussions cover sources of contaminants, methods of control and design recommendations. Air quality, ventilation requirements and standards are also discussed.
Standard

Aircraft Cabin Pressurization Criteria

2017-04-10
WIP
ARP1270C
This ARP covers the basic criteria for the design of cabin pressure control systems (CPCS) for general aviation, commercial and military pressurized aircraft.
Standard

Liquid Cooling Systems

2016-09-10
WIP
AIR1811B
The purpose of this Aerospace Information Report (AIR) is to provide guidelines for the selection and design of airborne liquid cooling systems. This publication is applicable to liquid cooling systems of the closed loop type and the expendable coolant type in which the primary function is transporting of heat from its source to a heat sink. Most liquid cooling system applications are oriented toward the cooling of electronics. Liquid cooling techniques, heat sinks, design features, selection of coolants, corrosion control, and servicing requirements for these systems are presented. Information on vapor compression refrigeration systems, which are a type of cooling system, is found in Reference 1.
Standard

Aircraft Humidification

2015-11-09
HISTORICAL
AIR1609A
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Animal Environment in Cargo Compartments

2015-11-01
CURRENT
AIR1600A
The environmental factors of prime importance in the transport of animals in aircraft are air temperature, humidity and carbon dioxide concentration, and of course space (or volume) limitations. Secondary factors are air velocity, noise, lighting, etc. Pressure is not addressed herein as pressure levels and rates of change are totally dictated by human occupancy requirements. Some basic governmental documents, such as References 1, 2 and 3, define overall requirements for animal transportation, but with very limited data on environmental requirements. Reference 4 gives some airplane characteristics measured during animal transportation from the USA to foreign destinations. Temperature and humidity profiles are indicative of airplane characteristics. This report presents information on the temperature, humidity, ventilation, and carbon dioxide limitations and the metabolic heat release rates for animals which will allow the determination of the environment required by the animals.
Standard

Environmental Systems Schematic Symbols

2015-10-16
HISTORICAL
ARP780B
This SAE Aerospace Recommended Practice (ARP) provides symbols to schematically represent aerospace vehicle environmental system components on functional flow schematic drawings and graphical computerized output. The symbols are for use on simplified diagrams that provide basic information about an environmental system. Symbols are provided to represent basic types of components used in environmental systems. Simple variations of basic symbol types are provided. Words on the schematic diagram, special symbol codes, or symbols that combine basic symbol types (Section 5) can be used to augment the basic symbols when appropriate. Special or combined symbols not contained in this document should be defined on the schematic diagram. An example of a complete schematic is given in Section 6. A bibliography of other documents on environmental system symbols is found in Appendix A.
Standard

NBC Protection Considerations for ECS Design

2014-07-01
CURRENT
AIR4362A
This SAE Aerospace Information Report (AIR) provides Nuclear, Biological and Chemical (NBC) protection considerations for environmental control system (ECS) design. It is intended to familiarize the ECS designer with the subject in order to know what information will be required to do an ECS design where NBC protection is a requirement. This is not intended to be a thorough discussion of NBC protection. Such a document would be large and would be classified. Topics of NBC protection that are more pertinent to the ECS designer are discussed in more detail. Those of peripheral interest, but of which the ECS designer should be aware are briefly discussed. Only radiological aspects of nuclear blast are discussed. The term CBR (Chemical, Biological, and Radiological) has been used to contrast with NBC to indicate that only the radiological aspects of a nuclear blast are being discussed.
Standard

Spacecraft Life Support Systems

2012-10-15
CURRENT
AIR1168/14A
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management.
Standard

Spacecraft Equipment Environmental Control

2011-07-25
CURRENT
AIR1168/13A
This part of the manual presents methods for arriving at a solution to the problem of spacecraft inflight equipment environmental control. The temperature aspect of this problem may be defined as the maintenance of a proper balance and integration of the following thermal loads: equipment-generated, personnel-generated, and transmission through external boundary. Achievement of such a thermal energy balance involves the investigation of three specific areas: 1 Establishment of design requirements. 2 Evaluation of properties of materials. 3 Development of analytical approach. The solution to the problem of vehicle and/or equipment pressurization, which is the second half of major environmental control functions, is also treated in this section. Pressurization in this case may be defined as the task associated with the storage and control of a pressurizing fluid, leakage control, and repressurization.
Standard

Heat and Mass Transfer and Air-Water Mixtures

2011-07-25
CURRENT
AIR1168/2A
Heat transfer is the transport of thermal energy from one point to another. Heat is transferred only under the influence of a temperature gradient or temperature difference. The direction of heat transfer is always from the point at the higher temperature to the point at the lower temperature, in accordance with the second law of thermodynamics. The fundamental modes of heat transfer are conduction, convection, and radiation. Conduction is the net transfer of energy within a fluid or solid occurring by the collisions of molecules, atoms, or electrons. Convection is the transfer of energy resulting from fluid motion. Convection involves the processes of conduction, fluid motion, and mass transfer. Radiation is the transfer of energy from one point to another in the absence of a transporting medium. In practical applications several modes of heat transfer occur simultaneously.
Standard

Spacecraft Life Support Systems

2011-06-20
HISTORICAL
AIR1168/14
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management.
X