Refine Your Search

Search Results

Technical Paper

Finite Element Analyses of Macroscopic Stress-Strain Relations and Failure Modes for Tensile Tests of Additively Manufactured AlSi10Mg with Consideration of Melt Pool Microstructures and Pores

2023-04-11
2023-01-0955
Finite element (FE) analyses of macroscopic stress-strain relations and failure modes for tensile tests of additively manufactured (AM) AlSi10Mg in different loading directions with respect to the building direction are conducted with consideration of melt pool (MP) microstructures and pores. The material constitutive relations in different orientations of AM AlSi10Mg are first obtained from fitting the experimental tensile engineering stress-strain curves by conducting axisymmetric FE analyses of round bar tensile specimens. Four representative volume elements (RVEs) with MP microstructures with and without pores are identified and selected based on the micrographs of the longitudinal cross-sections of the vertical and horizontal tensile specimens. Two-dimensional plane stress elastic-plastic FE analyses of the RVEs subjected to uniaxial tension are then conducted.
Journal Article

Finite Element Analyses of Structural Stresses near Dissimilar Spot Joints in Lap-Shear Specimens

2019-04-02
2019-01-1112
Structural stress distributions near nearly rigid, dissimilar and similar spot joints in lap-shear specimens are investigated by 3-D finite element analyses. A set of accurate closed-form structural stress solutions is first presented. The closed-form structural stress solutions were derived for a rigid inclusion in a square thin plate under various loading conditions with the weak boundary conditions along outer edges or semi-circular paths by satisfying the equilibrium conditions. Finite element analyses with different joint material behaviors, element types and mesh designs are conducted to examine the structural stress solutions near the spot joints in lap-shear specimens. The results of the finite element analyses indicate that the computational structural stress solutions on the edge of the joint depend on the joint material behavior, element type, and mesh design.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Technical Paper

Mechanical Strength and Failure Mode of Flow Drill Screw Joints in Coach-Peel Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses and Processing Conditions

2018-04-03
2018-01-0116
The mechanical strength and failure mode of flow drill screw (FDS) joints in coach-peel specimens of aluminum 6082-T6 sheets of three different thicknesses of 2.5, 2.8 and 3.0 mm and three different processing conditions under quasi-static loading conditions are investigated by experiments. The experimental results indicate that the mechanical strength and failure mode of FDS joints in coach-peel specimens are affected by the specimen thickness, clearance hole and stripping. The maximum load of a coach-peel specimen with an FDS joint with clearance hole increases as the thickness increases. For each of the thickness groups of 2.5, 2.8 and 3.0 mm, the maximum load of a coach-peel specimen with an FDS joint without clearance hole is lower than that with clearance hole. For the thickness group of 2.8 mm, the maximum load of a coach-peel specimen with a stripped FDS joint with clearance hole is lower than those of non-stripped ones with and without clearance hole.
Journal Article

Closed-Form Structural Stress Solutions for Fatigue Life Estimations of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2017-03-28
2017-01-0470
Closed-form structural stress solutions are investigated for fatigue life estimations of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole based on three-dimensional finite element analyses. The closed-form structural stress solutions for rigid inclusions under counter bending, central bending, in-plane shear and in-plane tension are first presented. Three-dimensional finite element analyses of the lap-shear specimens with FDS joints without and with gap (with and without clearance hole) are then presented. The results of the finite element analyses indicate that the closed-form structural stress solutions are quite accurate at the critical locations near the FDS joints in lap-shear specimens without and with gap (with and without clearance hole) for fatigue life predictions.
Journal Article

Stress-Strain Relations for Nodular Cast Irons with Different Graphite Volume Fractions under Tension and Compression

2017-03-28
2017-01-0399
In this paper, the results of finite element analyses for nodular cast irons with different volume fractions of graphite particles based on an axisymmetric unit cell model under uniaxial compression and tension are presented. The experimental compressive stress-strain data for a nodular cast iron with the volume fraction of graphite particles of 4.5% are available for use as the baseline material data. The elastic-plastic stress-strain relation for the matrix of the cast iron is estimated based on the experimental compressive stress-strain curve of the cast iron with the rule of mixture. The elastic-plastic stress-strain relation for graphite particles is obtained from the literature. The compressive stress-strain curve for the cast iron based on the axisymmetric unit cell model with the use of the von Mises yield function was then obtained computationally and compared well with the compressive stress-strain relation obtained from the experiment.
Journal Article

Investigation of Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2016-04-05
2016-01-0501
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
Journal Article

Stress Intensity Factor Solutions for Gas Metal Arc Welds in Lap-Shear Specimens

2015-04-14
2015-01-0708
In this paper, mode I and mode II stress intensity factor solutions for gas metal arc welds in single lap-shear specimens are investigated by the analytical stress intensity factor solutions and by finite element analyses. Finite element analyses were carried out in order to obtain the computational stress intensity factor solutions for both realistic and idealized weld geometries. The computational results indicate that the stress intensity factor solutions for the realistic welds are lower than the analytical solutions for the idealized weld geometry. The computational results can be used for the estimation of fatigue lives in a fatigue crack growth model under mixed mode loading conditions for gas metal arc welds.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Low Carbon Steel and HSLA Steel Sheets

2015-04-14
2015-01-0706
In this paper, failure modes of dissimilar laser welds in lap-shear specimens of low carbon steel and high strength low alloy (HSLA) steel sheets are investigated based on experimental observations. Micro-hardness tests across the weld zones of dissimilar laser welds were conducted. The hardness values of the fusion zones and heat affected zones are significantly higher than those of the base metals. The fatigue lives and the corresponding failure modes of laser welds as functions of the load ranges are then examined. Optical micrographs of the laser welds before and after failure under quasi-static and cyclic loading conditions are then examined. The failure modes and fatigue behaviors of the laser welds under different loading conditions are different. Under quasi-static loading conditions, a necking failure occurred in the upper low carbon steel sheet far away from the laser weld.
Journal Article

Stress Intensity Factor Solutions for Dissimilar Welds in Lap-Shear Specimens of Steel, Magnesium, Aluminum and Copper Sheets

2015-04-14
2015-01-1754
In this paper, the analytical stress intensity factor and J integral solutions for welds in lap-shear specimens of two dissimilar sheets based on the beam bending theory are first reviewed. The solutions are then presented in the normalized forms. Next, two-dimensional finite element analyses were selectively conducted to validate the analytical solutions based on the beam bending theory. The interface crack parameters, the stress intensity factor solutions, and the J integral solutions for welds in lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the combination of aluminum and copper sheets of different thickness ratios are then presented for convenient fracture and fatigue analyses. The transition thickness ratios for critical crack locations for different combinations of dissimilar materials are then determined from the analytical solutions.
Technical Paper

Effect of Temperature Cycle on Thermomechanical Fatigue Life of a High Silicon Molybdenum Ductile Cast Iron

2015-04-14
2015-01-0557
High silicon molybdenum (HiSiMo) ductile cast iron (DCI) is commonly used for high temperature engine components, such as exhaust manifolds, which are also subjected to severe thermal cycles during vehicle operation. It is imperative to understand the thermomechanical fatigue (TMF) behavior of HiSiMo DCI to accurately predict the durability of high temperature engine components. In this paper, the effect of the minimum temperature of a TMF cycle on TMF life and failure behavior is investigated. Tensile and low cycle fatigue data are first presented for temperatures up to 800°C. Next, TMF data are presented for maximum temperatures of 800°C and minimum cycle temperatures ranging from 300 to 600°C. The data show that decreasing the minimum temperature has a detrimental effect on TMF life. The Smith-Watson-Topper parameter applied at the maximum temperature of the TMF cycle is found to correlate well with out-of-phase (OP) TMF life for all tested minimum temperatures.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Aluminum and Copper Sheets

2014-04-01
2014-01-1986
Failure mode and fatigue behavior of dissimilar laser welds in lap-shear specimens of aluminum and copper sheets are investigated. Quasi-static tests and fatigue tests of laser-welded lap-shear specimens under different load ranges with the load ratio of 0.1 were conducted. Optical micrographs of the welds after the tests were examined to understand the failure modes of the specimens. For the specimens tested under quasi-static loading conditions, the micrograph indicates that the specimen failed through the fusion zone of the aluminum sheet. For the specimens tested under cyclic loading conditions, two types of failure modes were observed under different load ranges. One failure mode has a kinked crack initiating from the interfacial surface between the aluminum and copper sheets and growing into the aluminum fusion zone at an angle close to 90°.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

Failure Mode and Fatigue Behavior of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels

2013-04-08
2013-01-1023
Failure mode and fatigue behavior of friction stir spot welds made with convex and concave tools in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated based on experiments and a kinked fatigue crack growth model. Lap-shear specimens with the welds were tested under both quasistatic and cyclic loading conditions. Optical micrographs indicate that under both quasi-static and cyclic loading conditions, the welds mainly fail from cracks growing through the upper DP780GA sheets where the tools were plunged in during the welding processes. Based on the observed failure mode, a kinked fatigue crack growth model is adopted to estimate fatigue lives of the welds. In the kinked crack fatigue crack growth model, the stress intensity factor solutions for fatigue life estimations are based on the closed-form solutions for idealized spot welds in lap-shear specimens.
Journal Article

Fatigue Behavior of Self-Piercing Rivets and Clinch Joints in Lap-Shear Specimens of Aluminum Sheets

2013-04-08
2013-01-1024
Fatigue behavior of self-piercing rivets (SPRs) and clinch joints in lap-shear specimens of 6111-T4 aluminum sheets is investigated based on experimental observations and a fatigue life estimation model. Lap-shear specimens with SRPs and clinch joints were tested under cyclic loading conditions. Under cyclic loading conditions, fatigue cracks start from the curved interfacial surface of the upper sheet and then grow into the upper sheet thickness for both self-piercing rivets and clinch joints. The self-piercing rivets and clinch joints fail finally through the circumferential/transverse crack growth in the upper sheets and inner button crack growth, respectively. The structural stress solution and the experimental stress-life data for aluminum 6111-T4 sheets are adopted to estimate the fatigue lives of both types of joints. The fatigue life estimations based on the structural stress model show good agreement with the experimental results.
Journal Article

Failure Mode and Fatigue Behavior of Ultrasonic Spot Welds with Adhesive in Lap-Shear Specimens of Magnesium and Steel Sheets

2013-04-08
2013-01-1020
Failure modes and fatigue behaviors of ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets with and without adhesive are investigated. Ultrasonic spot welded, adhesive-bonded, and weld-bonded lap-shear specimens were made. These lap-shear specimens were tested under quasi-static and cyclic loading conditions. The ultrasonic spot weld appears not to provide extra strength to the weld-bonded lap-shear specimen under quasi-static and cyclic loading conditions. The quasi-static and fatigue strengths of adhesive-bonded and weld-bonded lap-shear specimens appear to be the same. For the ultrasonic spot welded lap-shear specimens, the optical micrographs indicate that failure mode changes from the partial nugget pullout mode under quasi-static and low-cycle loading conditions to the kinked crack growth mode under high-cycle loading conditions.
Journal Article

Failure Modes of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels under Quasi-Static and Cyclic Loading Conditions

2012-04-16
2012-01-0479
Failure modes of friction stir spot welds in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated under quasi-static and cyclic loading conditions based on experimental observations. Optical micrographs of dissimilar DP780GA/HSBS friction stir spot welds made by a concave tool before and after failure are examined. The micrographs indicate that the failure modes of the welds under quasi-static and cyclic loading conditions are quite similar. The micrographs show that the DP780GA/HSBS welds mainly fail from cracks growing through the upper DP780GA sheets where the concave tool was plunged into during the welding process. Based on the observed failure modes, a kinked fatigue crack growth model is adopted to estimate fatigue lives.
Journal Article

Fatigue Failure of Laser Welds in Lap-Shear Specimens of High Strength Low Alloy (HSLA) Steels under Cyclic Loading Conditions

2011-04-12
2011-01-0473
In this paper, the fatigue behavior of laser welds in lap-shear specimens of non-galvanized SAE J2340 300Y high strength low alloy (HSLA) steel sheets is investigated based on experimental observations and a fatigue life estimation model. Optical micrographs of the laser welds before and after failure under quasi static and cyclic loading conditions are examined. The micrographs show that the failure modes of laser welds under quasi-static and cyclic loading conditions are quite different. Under quasi-static loading conditions, the weld failure appears to be initiated from the base metal near the boundary of the base metal and the heat affected zone at a distance to the pre-existing crack tip, and the specimens fail due to the necking/shear of the lower left load carrying sheets.
Journal Article

Fatigue Behavior of Dissimilar Ultrasonic Spot Welds in Lap-Shear Specimens of Magnesium and Steel Sheets

2011-04-12
2011-01-0475
Fatigue behavior of dissimilar ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets is investigated based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Fatigue tests were conducted under different load ranges with two load ratios of 0.1 and 0.2. Optical micrographs of the welds after the tests were examined to understand the failure modes of the welds. The micrographs show that the welds mainly fail from kinked fatigue cracks growing through the magnesium sheets. The optical micrographs also indicate that failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the transverse crack growth mode under high-cycle loading conditions. The closed-form stress intensity factor solutions at the critical locations of the welds are used to explain the locations of fatigue crack initiation and growth.
X