Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Pediatric Thoracoabdominal Biomechanics

2009-11-02
2009-22-0013
No experimental data exist quantifying the force-deformation behavior of the pediatric chest when subjected to non-impact, dynamic loading from a diagonal belt or a distributed loading surface. Kent et al., (2006) previously published juvenile abdominal response data collected using a porcine model. This paper reports on a series of experiments on a 7-year-old pediatric post-mortem human subject (PMHS) undertaken to guide the scaling of existing adult thoracic response data for application to the child and to assess the validity of the porcine abdominal model. The pediatric PMHS exhibited abdominal response similar to the swine, including the degree of rate sensitivity. The upper abdomen of the PMHS was slightly stiffer than the porcine behavior, while the lower abdomen of the PMHS fit within the porcine corridor. Scaling of adult thoracic response data using any of four published techniques did not successfully predict the pediatric behavior.
Technical Paper

Comparison of Kinematic Responses of the Head and Spine for Children and Adults in Low-Speed Frontal Sled Tests

2009-11-02
2009-22-0012
Previous research has suggested that the pediatric ATD spine, developed from scaling the adult ATD spine, may not adequately represent a child's spine and thus may lead to important differences in the ATD head trajectory relative to a human. To gain further insight into this issue, the objectives of this study were, through non-injurious frontal sled tests on human volunteers, to 1) quantify the kinematic responses of the restrained child's head and spine and 2) compare pediatric kinematic responses to those of the adult. Low-speed frontal sled tests were conducted using male human volunteers (20 subjects: 6-14 years old, 10 subjects: 18-40 years old), in which the safety envelope was defined from an amusement park bumper-car impact.
Technical Paper

Methods for Determining Pediatric Thoracic Force-Deflection Characteristics From Cardiopulmonary Resuscitation

2008-11-03
2008-22-0004
Accurate pediatric thoracic force and deflection data are critical to develop biofidelic pediatric anthropomorphic test devices (ATDs) used in designing motor vehicle safety systems for child occupants. Typically, postmortem human subject (PMHS) experiments are conducted to gather such data. However, there are few pediatric PMHS available for impact research; therefore, novel methods are required to determine pediatric biomechanical data from children. In this study, we have leveraged the application of chest compressions provided in the clinical environment during pediatric cardiopulmonary resuscitation (CPR) to collect this fundamental data. The maximum deflection of the chest during CPR is in the range of chest deflections in PMHS impact experiments and therefore CPR exercises the chest in ways that are meaningful for biofidelity assessment. Thus, the goal of this study was to measure the force-deflection characteristics of the thorax of children and young adults during CPR.
Technical Paper

Anterior-Posterior Thoracic Force-Deflection Characteristics Measured During Cardiopulmonary Resuscitation: Comparison to Post-Mortem Human Subject Data

2006-11-06
2006-22-0006
Comparative data of thoracic compression response between live vs. post mortem human subjects (PMHS) has been reported, but the live subject tests are often at low deflections and include the effects of muscle tensing. Novel technology has been developed that overcomes several of these limitations. Specifically, a load cell and accelerometer has been integrated into a clinical monitor-defibrillator to measure chest compression and applied force during live human cardio-pulmonary resuscitation (CPR). The sensor is interposed between the hands of the person administering CPR and the sternum of the patient. The objective of this study was to compare the thoracic force-deflection measured during adult CPR to that measured during hub-based loading of adult PMHS. CPR represents a unique setting in which to study the mechanics of the chest as the thorax is loaded to a maximum chest deflection similar to that seen in a frontal crash environment and the effects of muscle tensing are minimized.
Technical Paper

Three-Year-Old Child Out-Of-Position Side Airbag Studies

1999-10-10
99SC03
A series of twenty-nine tests was completed by conducting static deployment of side airbag systems to an out-of-position Hybrid III three-year-old dummy. Mock-ups (bucks) of vehicle occupant compartments were constructed. The dummy was placed in one of four possible positions for both door- and seat-mounted side airbag systems. When data from each type of position test were combined for the various injury parameters it was noted that the head injury criteria (HIC) were maximized for head and neck tests, and the chest injury parameters were maximized for the chest tests. For the neck injury parameters, however, all of the test positions produced high values for at least one of the parameters. The study concluded the following. Static out-of- position child dummy side airbag testing is one possible method to evaluate the potential for injury for worst-case scenarios. The outcome of these tests are sensitive to preposition and various measurements should be made to reproduce the tests.
X