Refine Your Search

Topic

Search Results

Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems (FQIS)

2022-10-07
CURRENT
AIR5691B
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system and builds upon experiences gained in the industry in the last 10 years.
Standard

Electrical Bonding of Aircraft Fuel Systems

2022-10-04
CURRENT
AIR5128A
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
Standard

Aircraft Flame Arrestor Installation Guidelines and Test Methods

2021-08-26
CURRENT
ARP5776
The scope of this document is to provide pertinent information on demonstrating the performance of Flame Arrestors, also known as Fuel Vent Protectors (FVPs), in preventing the propagation of a deflagration when the arrestors are subjected to aerospace-representative flames produced by the venting of flammable gas through the arrestor. Test procedures for two separate combustion-loading profiles are presented herein: The flame hold test condition, and the flame propagation test condition. For the flame hold test condition, the applicability of two separate critical flows is discussed in which one flow results in the greatest flame arrestor temperature and a second flow results in the greatest temperature of the surrounding structure.
Standard

Acceptance Test Procedures and Standards to Ensure Clean Fuel System Components

2020-10-01
CURRENT
ARP1953B
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Aircraft Flexible Tanks General Design and Installation Recommendations

2019-05-07
CURRENT
AIR1664A
This SAE Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of nonself-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in Section 2.
Standard

Fluid-System-Component Specification Preparation Criteria

2013-10-04
CURRENT
AIR1082C
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications must not only identify all of the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe types of specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
Standard

Method-Pressure Drop Tests for Fuel System Components

2013-08-09
HISTORICAL
ARP868C
This document provides recommended methods and describes associated equipment and test setups to assist in understanding and conducting pressure drop tests on fuel system components. Background information and suggestions are provided as means of improving accuracy and repeatability of test results. Although written specifically for fuel system components, the methods, equipment and suggestions presented herein apply equally to pressure drop tests of other liquid-handling devices.
Standard

Nozzles and Ports – Gravity Fueling Interface Standards for Civil Aircraft

2012-01-03
CURRENT
AS1852D
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

FLUID-SYSTEM-COMPONENT SPECIFICATION PREPARATION CRITERIA

2007-12-05
HISTORICAL
AIR1082B
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications must not only identify all of the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe types of specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
Standard

ACCEPTANCE TEST PROCEDURES AND STANDARDS TO INSURE CLEAN FUEL SYSTEM COMPONENTS

2007-12-04
HISTORICAL
ARP1953A
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory type methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Fuel Level Control Valves/Systems

2007-12-04
HISTORICAL
AIR1660B
A fuel level control valve/system controls the quantity of fuel in a tank being filled or emptied. This document provides a general familiarization with these mechanisms (e.g. forms they take, functions, system design considerations). This document provides the aircraft fuel system designer with information about these mechanisms/devices, so that he can prescribe the types of level control valves/systems which are best suited for his particular fuel system configuration.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

2006-03-24
HISTORICAL
AS1852C
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

1997-08-01
HISTORICAL
AS1852B
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type. In addition, this document defines the minimum fuel nozzle tip dimensions for turbine fuel ground service equipment and the maximum fuel nozzle tip diameter for gasoline ground service equipment.
Standard

FIRE TESTING OF FLUID HANDLING COMPONENTS FOR AIRCRAFT ENGINES AND AIRCRAFT ENGINE INSTALLATIONS

1996-08-01
HISTORICAL
AS4273
This document establishes requirements, test procedures, and acceptance criteria for the fire testing of fluid handling components and materials used in aircraft fluid systems. It is applicable to fluid handling components other than those prescribed by AS1055 (e.g., hoses, tube assemblies, coils, fittings). It also is applicable to materials, wiring, and components such as reservoirs, valves, gearboxes, pumps, filter assemblies, accumulators, fluid-cooled electrical/electronic components, in-flight fluid system instrumentation, hydromechanical controls, actuators, heat exchangers, and manifolds. These components may be used in fuel, lubrication, hydraulic, or pneumatic systems.
Standard

AIRCRAFT FLEXIBLE TANKS GENERAL DESIGN AND INSTALLATION RECOMMENDATIONS

1994-09-01
HISTORICAL
AIR1664
This Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of non-self-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in section 3.
X