Refine Your Search

Topic

Search Results

Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

A Modeling Tool for Particulate Emissions in GDI Engines with Emphasis on the Injector Zone

2023-04-11
2023-01-0182
Fuel film deposits on combustion chamber walls are understood to be the main source of particle emissions in GDI engines under homogenous charge operation. More precisely, the liquid film that remains on the injector tip after the end of injection is a fuel rich zone that undergoes pyrolysis reactions leading to the formation of poly-aromatic hydrocarbons (PAH) known to be the precursors of soot. The physical phenomena accompanying the fuel film deposit, evaporation, and the chemical reactions associated to the injector film are not yet fully understood and require high fidelity CFD simulations and controlled experimental campaigns in optically accessible engines. To this end, a simplified model based on physical principles is developed in this work, which couples an analytical model for liquid film formation and evaporation on the injector tip with a stochastic particle dynamics model for particle formation.
Technical Paper

Numerical Analysis of the Injection Angle of Urea-Water Sprays for the Ammonia Generation in Realistic Test Conditions

2022-03-29
2022-01-0584
During the past decades, the Nitrogen Oxides (NOx) emission limitations have become stricter, promoting the development of after-treatment systems like Selective Catalytic Reduction (SCR) for emission reduction purposes. The Urea-Water Solution (UWS) spray characteristics can directly have an effect on the SCR efficiency. To understand the droplet breakup and mixing of the UWS with the surrounding air under different operating conditions, a computational campaign has been set up. The main objective of the present study is to recreate the spray injection process, as well as the chemical processes that the UWS spray undergoes, and to analyze the optimal injection angle to maximize the amount of ammonia generated during the injection process by means of Computational Fluid Dynamics (CFD). A Eulerian-Lagrangian framework has been employed to track the evolution of the injected droplets within a Reynolds-Averaged Navier-Stokes (RANS) turbulence formulation.
Technical Paper

Influence of the MeFo and DMC Content in the Fuel on the Gasoline DI Spray Characteristics with the Focus on Droplet Speed and Size

2021-09-21
2021-01-1191
E-fuels are proven to be a major contributing factor to reduce CO2 emissions in internal combustion engines. In gasoline engines, C1 oxygenate are seen as critical to reach CO2 and emission reduction goals. Their properties affect the fuel injection characteristics and thus the fuel mixture formation and combustion emissions. To exploit the full potential of e-fuels, the detailed knowledge of their spray characteristic is necessary. The correlation between the fuel content of C1 oxygenates and particulate emissions do not appear to be linear. To understand this correlation, the spray characteristics have to be investigated in detail. The reduced stoichiometric air requirement leads to an increase of the injected fuel mass, which has to evaporate. This can lead to a changed fuel film interaction within the combustion chamber walls and therefore a change of particle formation.
Technical Paper

Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray

2021-04-06
2021-01-0548
Selective Catalytic Reduction stands for an effective methodology for the reduction of NOx emissions from Diesel engines and meeting current and future EURO standards. For it, the injection of Urea Water Solution (UWS) plays a major role in the process of reducing the NOx emissions. A LES approach for turbulence modelling allows to have a description of the physics which is a very useful tool in situations where experiments cannot be performed. The main objective of this study is to predict characteristics of the flow of interest inside the injector as well as spray morphology in the near field of the spray. For it, the nozzle geometry has been reconstructed from X-Ray tomography data, and an Eulerian-Eulerian approach commonly known as Mixture Model has been applied to study the liquid phase of the UWS with a LES approach for turbulence modeling. The injector unit is subjected to typical low-pressure working conditions.
Technical Paper

Fuel Consumption Modelling of a TFSI Gasoline Engine with Embedded Prior Knowledge

2021-04-06
2021-01-0633
As an important means of engine development and optimization, modelbuilding plays an increasingly important role in reducing carbon dioxide emissions of the internal combustion engines (ICEs). However, due to the non-linearity and high dimension of the engine system, a large amount of data is required to obtain high model accuracy. Therefore, a modelling approach combining the experimental data and prior knowledge was proposed in this study. With this method, an artificial neural network (ANN) model simulating the engine brake specific fuel consumption (BSFC) was established. With mean square error (MSE) and Kullback-Leibler divergence (KLD) serving as the fitness functions, the 86 experimental samples and constructed physical models were used to optimize the ANN weights through genetic algorithms.
Technical Paper

Optical Measurement of Spark Deflection Inside a Pre-chamber for Spark-Ignition Engines

2020-10-14
2020-01-5096
The start of combustion in a spark-ignited engine is highly dependent upon the conditions between the two spark plug electrodes at ignition. In addition to the air-to-fuel ratio in this gap, the gas flow is seen as most critical. In a combustion engine with a standard spark plug that protrudes into the combustion chamber, this gas flow is mainly dependent upon the tumble, swirl, or squish that is developed by the cylinder head and the piston movement. However, the air movement in the pre-chamber depends on the orientation of the orifices towards the main combustion chamber (MCC). This implies a less complex manipulation of local velocity in the electrode gap. This paper focuses on the effect of different pre-chamber designs on spark deflection by the inflowing gas. Therefore, a test rig was developed using the spark plug thread in the cylinder head of a motored engine.
Technical Paper

Impact of the Injection Strategy on Soot Reactivity and Particle Properties of a GDI Engine

2020-04-14
2020-01-0392
The gradual global tightening of emission legislation for particulate matter emissions requires the development of new gasoline engine exhaust aftertreatment systems. For this reason, the development of gasoline direct injection engines aims at the reduction of particulate emissions by application of a Gasoline Particulate Filter (GPF). The regeneration temperature of GPF depend on soot reactivity towards oxidation and therefore on particle properties. In this study, the soot reactivity is correlated with nanostructural characteristics of primary gasoline particles as a function of specific engine injection parameters. The investigations on particle emissions were carried out on a turbocharged 4-cylinder GDI-engine that allows the variation of injection parameters. The emitted engine soot particles have been in-situ characterized towards their number and size distribution using an engine exhaust particle sizer (EEPS).
Technical Paper

Development of Valve Train Configurations Optimized for Cold Start and Their Effect on Diesel Soot Emission

2019-09-09
2019-24-0161
The continuous pursuit of more efficient diesel engines and the stricter emission regulations with the introduction of the Real Driving Emissions test (RDE) necessitate further investigations of heating strategies and their suitability in terms of series production. Under these circumstances heating strategies of a variable valve train for a single-cylinder research diesel engine have been first simulated and then experimentally tested at the Institute of Internal Combustion Engines of the Karlsruhe Institute of Technology (KIT). By combining statistical experimental design (DoE) and 1-D gas exchange simulations, empirical DoE models for the design of suitable camshaft configurations have been established. After having performed a potential assessment, the most favorable configurations were manufactured and subsequently tested.
Technical Paper

Comparison of Different Particle Measurement Techniques at a Heavy-Duty Diesel Engine Test Bed

2019-09-09
2019-24-0158
The particle size distribution (PSD) of submicron exhaust engine-out soot, is typically determined using a method based on the electrical mobility is used. This measurement procedure is subjected to uncertainty mainly due to inaccurate dilution of the sampled aerosol, unknown flow conditions at the probe inlet and the limited measurement accuracy of the device itself. In order to determine the measurement uncertainty, two different aerosol spectrometers, a TSI EEPS 3090 and a Cambustion DMS500 were installed and operated simultaneously at a single-cylinder heavy-duty diesel engine at the Institute of Internal Combustion Engines of the Karlsruhe Institute of Technology (KIT).The engine was operated at various operating points to evaluate the ability of the spectrometers to correctly determine the PSD and the total particle number concentration (TPNC) at different boundary conditions.
Technical Paper

Spray Characterization of the Urea-Water Solution (UWS) Injected in a Hot Air Stream Analogous to SCR System Operating Conditions

2019-04-02
2019-01-0738
The Selective Catalytic Reduction (SCR) system has great potential in reducing NOx emissions. The urea-water solution (UWS) is the preferred method on vehicles for obtaining the ammonia, the required reductant for SCR. The UWS spray is necessary to transform exhaust gas into nitrogen and water and plays an important role in the performance of this system. The UWS needs to be properly mixed with the exhaust gas coming from the engine before entering the SCR, therefore the solution must be injected in the exhaust pipe in a way that it completely vaporizes in order to reduce deposit formation and guaranteeing a proper functioning and durability of the NOx reduction system. Achieving complete vaporization of the UWS spray is not an easy task, mainly due to reduced package space. Another challenge for converting UWS to ammonia is the latent energy in the exhaust.
Technical Paper

Impact of Non-Thermal Plasma on Particulate Emissions in Application in a Diesel Engine Exhaust Duct

2017-12-06
2017-01-5100
Particulates and nitrogen oxides comprise the main emission components of the Diesel combustion and therefore are subject to exhaust emission legislation in respective applications. Yet, with ever more stringent emission standards and test-procedures, such as in passenger vehicle applications, resulting exhaust gas after-treatment systems are quite complex and costly. Hence, new technologies for emission control have to be explored. The application of non-thermal plasma (NTP) as a means to perform exhaust gas after-treatment is one such promising technology. In several publications dealing with NTP exhaust gas after-treatment the plasma state was generated via dielectric barrier discharges. Another way to generate a NTP is by a corona high-frequency discharge. Hence, in contrast to earlier publications, the experiments in this publication were conducted on an operated series-production Diesel engine with an industrial pilottype corona ignition system.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Journal Article

Formation of Engine Internal NO2: Measures to Control the NO2/NOX Ratio for Enhanced Exhaust After Treatment

2017-03-28
2017-01-1017
The proportion of nitrogen dioxide in the engine-out emissions of a Diesel engine is of great importance for the conversion of the total oxides of nitrogen (NOX) emissions in SCR catalysts. Particularly at lower engine loads and lower exhaust temperatures an increase of the already low NO2/NOX fraction will enhance the SCR operation significantly. For this purpose, the understanding of the NO2 formation during the Diesel combustion and expansion stroke is as substantial as being aware of the different thermodynamic impacts and engine operating parameters that affect the formation process. To determine the influences on the NO2 emission level several variation series were performed on a single-cylinder research engine. Especially the charge dilution parameters like the air-fuel ratio and the EGR rate as well as the injection parameters could be identified to be decisive for the NO2 formation.
Journal Article

Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

2017-03-28
2017-01-0859
The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface area density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity.
Technical Paper

Experimental Investigations on CI and SI Combustion Mode with Naphtha Fuels for Stationary Engine Applications

2017-03-28
2017-01-0874
Throughout the world cost-efficient Naphtha streams are available in refineries. Owing to less processing, CO2 emissions emitted in the course of production of these fuels are significantly lower than with conventional fuels. In common CI/SI engines, however, the deployment of Naphtha is considerably restricted due to unfavourable fuel properties, e.g. low cetane/octane numbers. Former investigations illustrated high knocking tendency for SI applications and severe pressure rise for CI combustion. Moreover, the focus of past publications was on passenger vehicle applications. Hence, this paper centers on heavy-duty stationary engine applications. Consequently, measures to increase the technically feasible IMEP with regard to limitations in knocking behaviour and pressure rise were explored whilst maintaining efficient combustion and low emissions.
Journal Article

Development of a NOx Storage-Reduction Catalyst Based Min-NOx Strategy for Small-Scale NG-Fueled Gas Engines

2016-11-08
2016-32-0072
One promising alternative for meeting stringent NOx limits while attaining high engine efficiency in lean-burn operation are NOx storage catalysts (NSC), an established technology in passenger car aftertreatment systems. For this reason, a NSC system for a stationary single-cylinder CHP gas engine with a rated electric power of 5.5 kW comprising series automotive parts was developed. Main aim of the work presented in this paper was maximising NOx conversion performance and determining the overall potential of NSC aftertreatment with regard to min-NOx operation. The experiments showed that both NOx storage and reduction are highly sensitive to exhaust gas temperature and purge time. While NOx adsorption rate peaks at a NSC inlet temperature of around 290 °C, higher temperatures are beneficial for a fast desorption during the regeneration phase. Combining a relatively large catalyst (1.9 l) with a small exhaust gas mass flow leads to a low space velocity inside the NSC.
Journal Article

Optical Investigations of Soot Formation Mechanisms and Possible Countermeasures on a Turbocharged Port Fuel Injection SI Engine

2016-10-17
2016-01-2163
Despite the known benefits of direct injection (DI) spark ignition (SI) engines, port fuel injection (PFI) remains a highly relevant injection concept, especially for cost-sensitive market segments. Since particulate number (PN) emissions limits can be expected also for PFI SI engines in future emission legislations, it is necessary to understand the soot formation mechanisms and possible countermeasures. Several experimental studies demonstrated an advantage for PFI SI engines in terms of PN emissions compared to DI. In this paper an extended focus on higher engine loads for future test cycles or real driving emissions testing (RDE) is applied. The combination of operating parameter studies and optical analysis by high-speed video endoscopy on a four-cylinder turbocharged SI engine allows for a profound understanding of relevant soot formation mechanisms.
Technical Paper

Soot Model Calibration Based on Laser Extinction Measurements

2016-04-05
2016-01-0590
In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
Journal Article

Thermodynamic and Optical Investigations on Particle Emissions in a DISI Engine at Boosted Operation

2015-09-01
2015-01-1888
The subject of this paper is the reduction of the particle number emissions of a gasoline DI engine at high engine load (1.4 MPa IMEP). To reduce the particle number emissions, several parameters are investigated: the large scale charge motion (baseline configuration, tumble and swirl) can be varied at the single cylinder engine by using inlays in the intake port. The amount of residual gas can be influenced by the exhaust backpressure. By using a throttle valve, the exhaust backpressure can be set equal to the intake pressure and hence simulate a turbocharger's turbine in the exhaust system or the throttle valve can be wide open and thus simulate an engine using a supercharger. Additionally, higher fuel injection pressure can help to enhance mixture formation and thus decrease particulate formation. Therefore, a solenoid injector with a maximum pressure of 30 MPa is used in this work.
X