Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fuel Cells for Transportation

2024-07-16
This is a three-day course which provides a comprehensive and up to date introduction to fuel cells for use in automotive engineering applications. It is intended for engineers and particularly engineering managers who want to jump‐start their understanding of this emerging technology and to enable them to engage in its development. Following a brief description of fuel cells and how they work, how they integrate and add value, and how hydrogen is produced, stored and distributed, the course will provide the status of the technology from fundamentals through to practical implementation.
Technical Paper

A computational study of hydrogen direct injection using a pre-chamber in an opposed-piston engine

2024-07-02
2024-01-3010
Opposed-piston two-stroke engines offer numerous advantages over conventional four-stroke engines, both in terms of fundamental principles and technical aspects. The reduced heat losses and large volume-to-surface area ratio inherently result in a high thermodynamic efficiency. Additionally, the mechanical design is simpler and requires fewer components compared to conventional four-stroke engines. When combining this engine concept with alternative fuels such as hydrogen and pre-chamber technology, a potential route for carbon-neutral powertrains is observed. To ensure safe engine operation using hydrogen as fuel, it is crucial to consider strict safety measures to prevent issues such as knock, pre-ignition, and backfiring. One potential solution to these challenges is the use of direct injection, which has the potential to improve engine efficiency and expand the range of load operation.
Technical Paper

Measurements in the Recirculation Path of a Fuel Cell System and Extension to Gas Analysis of the Anode Gas Mixture

2024-07-02
2024-01-3009
When using "green" hydrogen, fuel cell technology plays a key role in emission-free mobility. A powertrain based on fuel cells (FC) shows its advantages over battery-electric powertrains when the requirement profile primarily demands high performance over a longer period of time, high flexible availability and short refueling times. In addition, FC achieves higher effi-ciencies than the combustion of hydrogen in a gas engine, meaning that the chemical energy is used more efficiently than with established combustion engines. When using FC technology, numerous companies in Baden-Württemberg can contribute their specific expertise from the traditional automotive construction and supplier business. This includes auxiliary units in the air (cathode) and hydrogen (anode) path, such as the air com-pressor, the H2 recycling pump, humidifier, cooling system, power electronics, valve and pressure tank technology as well as components of the fuel cell stack itself.
Technical Paper

Designing a Prototype of a Mobile Charging Robot for Charging of Electric Vehicles

2024-07-02
2024-01-2990
As the market for electric vehicles grows, so does the demand for appropriate charging infrastructure. The availability of sufficient charging points is essential to increase public acceptance of electric vehicles and to avoid the so-called “charging anxiety”. However, the charging stations currently installed may not be able to meet the full charging demand, especially in areas where there is a general lack of grid infrastructure, or where the fluctuating nature of charging demand requires flexible, high-power charging solutions that do not require expensive grid extensions. In such cases, the use of mobile charging stations provides a good opportunity to complement the existing charging network. This paper presents a prototype of a mobile charging solution that is being developed as part of an ongoing research project, and discusses different use cases.
Technical Paper

Miller Cycle and Internal EGR in Diesel Engines Using Alternative Fuels

2024-07-02
2024-01-3020
The Single Cylinder Research Engine (SCRE) at the Institute of Internal Combustion Engines and Powertrain Systems is equipped with a variable valve train that allows to switch between regular intake valve lift and early intake valve closing (Miller). On the exhaust side, a secondary valve lift on each valve is possible with adjustable back pressure and thus the possibility of realising internal EGR. In combination with alternative fuels, even if they are Drop-In capable as HVO, properties differ and can influence the emission and efficiency behaviour. The investigations of this paper are focusing on regenerative Drop-In fuel (HVO), fossil fuel (B7), and an oxygenate (OME), that needs adaptions at the engine control unit, but offers further emission potential. By commissioning a 2-stage boost system, it is possible to fully equalize the air mass in Miller mode compared to the normal valve lift.
X