Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Gaining Engineering Competence in Plastics

1999-05-10
1999-01-1641
Plastics are largely regarded as commodity materials. However, they differ considerably from the materials which we became acquainted with during our college education. Although one can proceed to design plastic components and manufacture them without seriously considering a training program, the consequences can be substantial sacrifices to quality, development cost, part cost, and time to market, as well as adding a great deal of unnecessary stress to the workplace. This presentation explains why plastics are different and recommends a training curriculum that should be a part of strategic planning.
Technical Paper

Error/Mistake Proofing During New Vehicle Launches

1999-05-10
1999-01-1632
The engineering community is becoming increasingly aware of the significant benefits of performing error proofing on product and tooling designs. If a part or tooling can be designed or redesigned to allow for one-way assembly, the option of incorrect assembly at the plant is eliminated, making the process more robust. The goal of the error proofing exercise is to reduce operator decisions, eliminate misbuilds, and improve quality. Through participation in this type of exercise, all key stakeholders, including product, process, tooling, and production personnel, have greater opportunity to identify, prevent, and resolve potential production issues well in advance of launch.
Technical Paper

Integrating the Production Information System with Manufacturing Cell Design - A Lean, Linked Cell Production System Design Implementation

1999-05-10
1999-01-1634
The linked cell system gives both reduced cost and volume flexibility. The characteristics of the linked cell system are a consequence of decoupling the operators from the machines, using standard work in process between the cells and by integrating the information system with the cell and system design. By decoupling the operators from the machines the capacity can be increased/decreased in small increments by using more or fewer operators in the cell. The information system is integrated with the linked cell design by the use of a Heijunka box. The Heijunka is used to level production and to initiate the pace of production as a result of pulling withdrawal kanban at a standard time interval. This standard time interval is called the pitch of production. The kanban cards give information about what to produce, when to produce, when to make changeovers but they also give information to control the material replenishment.
Technical Paper

The Importance of Takt Time in Manufacturing System Design

1999-05-10
1999-01-1635
Lean production has greatly influenced the way manufacturing systems should be designed. One important aspect of lean production is takt time. Takt time relates customer demand to available production time and is used to pace the production. This paper applies the manufacturing system design and deployment framework to describe the impact of takt time on both the design and the operation of a manufacturing system. The goal of this paper is to illustrate the relevant relationships of takt time to overall system design.
Technical Paper

Lean Ergonomics: Twelve Simple Rules to Fit Jobs to People

1999-05-10
1999-01-1636
This paper provides twelve rules to help reduce four key ergonomic risk factors (force, frequency, posture and mechanical stress). These rules were developed to assist individuals who may not have received extensive ergonomic training but who are involved in implementing any changes (major or minor) to manufacturing work stations. This includes changes in task and/or changes in equipment. A complete ergonomic analysis of a work situation is a good idea in most cases, but these rules will avoid many of the commonly occurring problems if applied early in the design or modification of a workplace.
Technical Paper

Preparing for High Performance Work Organizations – The UDM / GC Bachelor of Manufacturing Engineering Program

1999-05-10
1999-01-1637
There are many analogies between the development of education and industrial development in the United States during the 1900s. In both segments of our society the emphasis on quantity of output led to the use of ever more specialized tools and concepts with sub-optimization often reducing the overall output quality. More recently both education and industry, especially the manufacturing sector, have recognized the value added concepts of integration, i.e., applying a holistic approach to their operations. In so doing a new workplace has been defined, the “High Performance Work Organization” (HPWO) (1). The discussion of the effects this development has had on manufacturing of goods and services is left to other presentations in this conference. This presentation focuses on an example from education which illustrates how integration of experiential and academic activities has been set as the cornerstone of a new construct for engineering education.
Technical Paper

Graduate Education in Manufacturing Engineering for the Automotive Industry of the Future

1999-05-10
1999-01-1638
This paper discusses the evolution of graduate education in manufacturing engineering and the curriculum needed to educate manufacturing engineers in the automotive industry. This paper examines the master's and doctoral curriculum in manufacturing engineering at the University of Michigan-Dearborn. Finally, it proposes future direction for graduate education in manufacturing that will be needed for the automotive industry of the future.
Technical Paper

A Journey Towards Technical Competency in Plastics Process Simulation

1999-05-10
1999-01-1640
Plastics manufacturing technology is rapidly changing. The use of process simulation to increase competitiveness has proliferated. Visteon Automotive Systems is committed to developing competent workforce and niche capabilities in plastics processing simulation. In this paper the current capabilities and future development plan for plastic process simulation are discussed. An integrated concurrent engineering process has been developed and implemented to deliver high quality robust plastics automotive products and systems. This paper highlights the technological advancements achieved by Visteon in the field of analytical simulation of common manufacturing processes. In addition, future development initiatives towards the technical competency in plastics manufacturing simulation are discussed throughout the manuscript.
Technical Paper

Fuel Quality Control by Mid Infrared Spectroscopy

1999-05-03
1999-01-1546
Gasolines and diesel fuels of wide source were analyzed with the aim to predict the quality through the mid infrared spectroscopy and the algorithms PCA-PCR and PLS. The results revealed that octane number, cetane number, MTBE, benzene, aromatics and specific gravity could be predicted with good reliability. The other relevant fuel physical-chemical characteristics were beyond the precision of the standard test methods.
Technical Paper

Reversibility of Sulfur Effects on Emissions of California Low Emission Vehicles

1999-05-03
1999-01-1544
The Coordinating Research Council conducted a program to measure the reversibility of fuel sulfur effects on emissions from California Low Emission Vehicles (LEVs). Six LEV models were tested using two non-oxygenated conventional Federal fuels with 30 and 630 ppm sulfur. The following emission test sequence was used: 30 ppm fuel to establish a baseline, 630 ppm fuel, and return to 30 ppm fuel. A series of emission tests were run after return to 30 ppm to ensure that emissions had stabilized. The effect of the driving cycle on reversibility was evaluated by using both the LA4 and US06 driving cycles for mileage accumulation between emission tests after return to 30-ppm sulfur fuel. The reversibility of sulfur effects was dependent on the vehicle, driving cycle, and the pollutant. For the test fleet as a whole most but not all of the sulfur effects were reversible.
Technical Paper

Exhaust Particulate Matter Emissions from In-Use Passenger Vehicles Recruited in Three Locations: CRC Project E-24

1999-05-03
1999-01-1545
FTP-UDDS (urban dynamometer driving schedule) exhaust particulate matter (PM) emission rates were determined for 361 light-duty gasoline (LDGV) and 49 diesel passenger vehicles ranging in model year (MY) from 1965 to 1997. LDGVs were recruited into four MY categories. In addition, special effort was made to recruit LDGVs with visible smoke emissions, since these vehicles may be significant contributors to the mobile source PM emission inventory. Both light and heavy-duty diesels where included in the passenger diesel test fleet, which was insufficient in size to separate into the same MY categories as the LDGVs. Vehicles were tested as-received in three areas: Denver, Colorado; San Antonio, Texas; and the South Coast Air Quality Management District, California. The average PM emission rates were 3.3, 79.9, 384 and 558 mg/mi for 1991-97 MY LDGVs, pre-1981 LDGVs, smoking LDGVs and the diesel vehicles, respectively.
Technical Paper

Shoebox Converter Design for Thinwall Ceramic Substrates

1999-05-03
1999-01-1542
Shoebox catalytic converter design to securely mount thinwall substrates with uniform mounting mat Gap Bulk Density (GBD) around the substrate is developed and validated. Computational Fluid Dynamic (CFD) analysis, using heat transfer predictions with and without chemical reaction, allows to carefully select the mounting mat material for the targeted shell skin temperature. CFD analysis enables to design the converter inlet and outlet cones to obtain uniform exhaust gas flow to achieve maximum converter performance and reduce mat erosion. Finite Element Analysis (FEA) is used to design and optimize manufacturing tool geometry and control process. FEA gives insight to simulate the canning process using displacement control to identify and optimize the closing speed and load to achieve uniform mat Gap Bulk Density between the shell and the substrate.
Technical Paper

A Study on the Practicability of a Secondary Air Injection for Emission Reduction

1999-05-03
1999-01-1540
In this study, feasibility tests of secondary air injection technology and lean A/F control technology were performed for LEV program using the FTP75 test on a 2.0 DOHC A/T vehicle. Second-by-second emissions and temperatures were evaluated. The temperatures of exhaust gas were measured at exhaust manifold, front of warm up, and the center of warm up converter. At first, amount of secondary air injection was determined with a bench aged warm up converter and a fresh UCC. And then, the performances of secondary air injection and lean A/F control strategy were compared with 80,000km vehicle aged converters(warm up converter, UCC). Both secondary air injection and lean A/F control technologies satisfied the ULEV regulation. This study shows that the lean A/F control strategy can be one of the potential technologies to meet the LEV/ULEV regulations without an active system that need a cost up.
Technical Paper

Flow Analysis and Catalytic Characteristics for the Various Catalyst Cell Shapes

1999-05-03
1999-01-1541
The shape of unit cell of catalytic converter has great influence on the conversion efficiency and pressure drop characteristics. Therefore, the properties of design parameters of catalyst monolith were analyzed and the parameters of various cell shapes of catalyst were compared. Also, the numerical study of a three dimensional compressible flow in a Close-coupled Catalyst Converter (CCC) system was performed to investigate the flow characteristics and the flow distribution of exhaust gases. Unsteady flow analysis shows that severe interferences of each pulsating exhaust gas flow as well as geometric factors (junction, mixing pipe, cell shape etc.) influence greatly on the flow uniformity and flow characteristic in substrate. The results can be applied for the catalytic converter design.
Technical Paper

A Method to Measure Air Conditioning Refrigerant Contributions to Vehicle Evaporative Emissions (SHED Test)

1999-05-03
1999-01-1539
Although the intent of the SHED test (Sealed Housing for Evaporative Determination) is to measure evaporative fuel losses, the SHED sampling methodology in fact measures hydrocarbons from all vehicle and test equipment sources. Leakage of air conditioning (AC) refrigerant is one possible non-fuel source contributing to the SHED hydrocarbon measurement. This report describes a quick and relatively simple method to identify the contribution of AC refrigerant to the SHED analyzer reading. R134A (CH2FCF3), the hydrofluorocarbon refrigerant used in all current automotive AC systems, as well as its predecessor, the chlorofluorocarbon R12, can be detected using the gas chromatography methods currently in place at many emissions labs for the speciation of exhaust and evaporative hydrocarbon emissions.
Technical Paper

Evaluation of New Volatility Indices for Modern Fuels

1999-05-03
1999-01-1549
From 1995 to 1997, the Coordinating Research Council (CRC) conducted a cold-start driveability program to evaluate the behavior of lower volatility fuels at cold, intermediate, and warm ambient temperatures. The program used 135 vehicles to evaluate 87 hydrocarbon, MTBE blended, and ethanol blended fuels. Evaporative driveability index equations (EDIs) were developed using the test design fuel variables (E158°F, E200°F, E300°F), and three other variable sets: (E158°F, E250°F, E330°F), (T10, T50, T90), and (E70°C, E100°C, E140°C). The models that best fit the data contained oxygenate offsets. Overall, the best indices are the E70°C, E100°C, E140°C equation and the DI equation with offsets.
Technical Paper

The CRC Port Fuel Injector Bench Test Method, Interlaboratory Study, and Vehicle Test Correlation

1999-05-03
1999-01-1548
Port-fuel-injection (PFI) problems were first reported late in 1984. Deposits that formed on the tip of the pintle-type injectors of certain engines restricted fuel flow and caused driveability and emission problems. Responding to this problem, industry test programs were initiated to reproduce the deposits under controlled conditions. In 1986, a vehicle test procedure was identified and the automotive industry recommended a pass/fail performance level. Building upon available information, the Coordinating Research Council's (CRC) Port Fuel Injector Deposit Group developed a standard vehicle test procedure to evaluate various unleaded gasolines for port-fuel-injection fouling. The vehicle test procedure was adopted as an ASTM test method. The United States Environmental Protection Agency (EPA) and the State of California accepted the procedure as the standard for measuring a gasoline's propensity to form deposits in a pintle-type injector.
Technical Paper

The Optimum Design for Frictional Surface of Piston Ring of Engines

1999-05-03
1999-01-1526
Based on the principle of conjugate curve surface and the theory of hydrodynamic lubrication, the similar spherical spiral surface, which has the best lubrication effect, was obtained in the paper. Experiment show, this kind of frictional surface is lower 15% at power loss, and it is higher 13% at service life than the traditional frictional surface of piston ring, (such as barrel, stepped, cuneiform, rectangle and so on).
Technical Paper

Effects of Load on Emissions and NOx Trap/Catalyst Efficiency for a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1528
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested at constant engine speed (2000 rpm) over a range of loads. Engine-out and tailpipe emissions of gas phase species were measured each second. This allowed examination of the engine-out emissions for late and early injection. Regeneration of the lean NOx trap/catalyst was also examined, as was the efficiency of NOx reduction. NOx stored in the trap/catalyst is released at the leading edge of regenerations, such that the tailpipe NOx is higher than the engine-out NOx for a brief period. The efficiency of NOx reduction was <50% for the lowest loads examined. As the load increased, the efficiency of NOx reduction decreased to near 0% due to excessive catalyst temperatures. Loads sufficiently high to require a rich mixture produce high NOx reduction efficiencies, but in this case the NOx reduction occurs via the three-way catalysts on this vehicle.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
X