Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

CFD-Based Shape Optimization for Optimal Aerodynamic Design

2012-04-16
2012-01-0507
Increased energy costs make optimal aerodynamic design even more critical today as even small improvements in aerodynamic performance can result in significant savings in fuel costs. Energy conscious industries like transportation (aviation and ground based) are particularly affected. There have been a number of different optimization methods, some of which require geometrically parameterized models. For non-parameterized models (as it is the case often in reality where models and shapes are very complex). Shape optimization and adjoin solvers are some of the latest approaches. In our study we are focusing on generating best practices and investigating different strategies of employing the commercially available shape optimizer tool from ANSYS'CFD solver Fluent. The shape optimizer is based on a polynomial mesh-morphing algorithm. The simple case of a low speed, airfoil/flap combination is used as a case study with the objective being the lift to drag ratio.
Technical Paper

Automation of Vehicle Aerodynamic Shape Exploration and Optimization using Integrated Mesh Morphing and CFD

2011-04-12
2011-01-0170
Thorough design exploration is essential for improving vehicle performance in various aspects such as aerodynamic drag. Shape optimization algorithms in combination with computational tools such as Computational Fluid Dynamics (CFD) play an important role in design exploration. The present work describes a Free-Form Deformation (FFD) approach implemented within a general purpose CFD code for parameterization and modification of the aerodynamic shape of real-life vehicle models. Various vehicle shape parameters are constructed and utilized to change the shape of a vehicle using a mesh morphing technique based on the FFD algorithm. Based on input and output parameters, a design of experiments (DOE) matrix is created. CFD simulations are run and a response surface is constructed to study the sensitivity of the output parameter (aerodynamic drag) to variations in each input parameter.
Technical Paper

Integrated Brake Squeal with Induced Thermal Stress Analysis

2017-06-05
2017-01-1900
Brake squeal is an instability issue with many parameters. This study attempts to assess the effect of thermal load on brake squeal behavior through finite element computation. The research can be divided into two parts. The first step is to analyze the thermal conditions of a brake assembly based on ANSYS Fluent. Modeling of transient temperature and thermal-structural analysis are then used in coupled thermal-mechanical analysis using complex eigenvalue methods in ANSYS Mechanical to determine the deformation and the stress established in both the disk and the pad. Thus, the influence of thermal load may be observed when using finite element methods for prediction of brake squeal propensity. A detailed finite element model of a commercial brake disc was developed and verified by experimental modal analysis and structure free-free modal analysis.
Technical Paper

A Multi-disciplinary and Multi-scale Simulation-Based Approach for the Design of Control Systems

2013-09-17
2013-01-2212
This paper introduces a model-based systems and embedded software engineering, workflow for the design of control systems. The interdisciplinary approach that is presented relies on an integrated set of tools that addresses the needs of various engineering groups, including system architecture, design, and validation. For each of these groups, a set of best practices has been established and targeted tools are proposed and integrated in a unique platform, thus allowing efficient communication between the various groups. In the initial stages of system design, including functional and architectural design, a SysML-based approach is proposed. This solution is the basis to develop systems that have to obey both functional and certification standards such as ARINC 653 (IMA) and ARP 4754A. Detailed system design typically requires modeling and simulation of each individual physical component of the system by various engineering groups (mechanical, electrical, etc.).
Technical Paper

Implementing Simulation Driven Product Development for Thermoforming of an Instrument Panel

2013-04-08
2013-01-0642
In this case study, the thermoforming of an automotive instrument panel is considered. The effect of different oven settings on the final material distribution is studied using structural FEA simulation. The variable thickness distribution of the thermoformed part is mapped onto a structural model using a new simple mapping algorithm, and a structural FEA simulation is carried out to examine the final warpage of the instrument panel. The simulation predicts that the minimum thickness of the formed part can be increased by 10% by optimizing the oven settings. Although the optimized process uses oven settings that are less uniform than the baseline settings, the model indicates that warpage experienced by the optimized part will be less than that of the baseline case.
Journal Article

An Investigation of CutCell Meshing Strategies for Accurate Aerodynamic Performance Prediction

2012-04-16
2012-01-0499
With advances in computing power and Computational Fluid Dynamics (CFD) algorithms, the complexity of CutCell based simulation models has significantly increased. In this study three dimensional numerical simulations were created for steady incompressible flow around airfoil shape. The NACA-0012 airfoil was used for this study. Boundary layer thickness, mesh expansion ratio, and mesh density variation parameters were investigated. Drag and lift coefficients were compared to experimental data. Use of the CutCell method results in a good agreement between CFD results and experimental data.
Technical Paper

An Eulerian Approach with Mesh Adaptation for Highly Accurate 3D Droplet Dynamics Simulations

2019-06-10
2019-01-2012
Two main approaches are available when studying droplet dynamics for in-flight icing simulations: the Lagrangian approach, in which each droplet trajectory is integrated until it impacts the vehicle under study or when it leaves it behind without impact, and the Eulerian approach, where the droplet dynamics is solved as a continuum. In both cases, the same momentum equations are solved. Each approach has its advantages. In 2D, the Lagrangian approach is easy to code and it is very efficient, particularly when used in combination with a panel method flow solver. However, it is a far less practical approach for 3D simulations, particularly on complex geometries, as it is not an easy task to accurately determine the droplet seeding region without a great number of droplet trajectories, dramatically increasing the computing cost. Converting the impact locations into a water collection distribution is also a complex task, since droplet trajectories in 3D can follow convoluted paths.
Technical Paper

The Computational Cost and Accuracy of Spray Droplet Collision Models

2019-04-02
2019-01-0279
This study focuses on Lagrangian spray models that are commonly used in engine CFD simulations. In modeling sprays, droplet collision is one of the physical phenomena that must be accounted for. There are two main parts of droplet collision models for sprays - detecting colliding pairs of droplets and predicting the outcomes of these collisions. For the first part, we focus on the efficiency of the algorithm. We present an implementation of the arbitrary adaptive collision mesh model of Hou and Schmidt [1], and examine its efficiency in dealing with large simulations. Through theoretical analysis and numerical tests, we show that the computational cost of this model scales pseudo-linearly with respect to the number of parcels in the sprays. Regarding the second part, we examine the variations in existing phenomenological models used for predicting binary droplet collision outcomes. A quantitative accuracy metric is used to evaluate the models with respect to the experimental data set.
Technical Paper

Multi-Objective Aerodynamic Optimization of Vehicle Shape Using Adjoint Approach Based on Steady-State and Transient Flow Solutions

2021-04-06
2021-01-0945
In order to achieve the purpose of saving energy and reducing emission, the improvement of aerodynamic performance plays an increasingly crucial role for car manufacturers. Previous studies have confirmed the validity of gradient-based adjoint algorithm for its high efficiency in shape optimization. In this paper, two important aspects of adjoint approach were explored. One is vehicle aerodynamic optimization with multiple objectives, and the other is using time-averaged flow results as the primal solution, both are issues of high interest in recent applications. First, adjoint shape optimization with steady-state and time-averaged flow simulations were respectively calculated and comparatively discussed based on a production SUV. The shape modifications of the two cases indicated that the impact of primal solution on design change could not be neglected, due to the different intrinsic codes of steady and transient turbulence models.
X