Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Characterization of Li-Ion Phosphate (LiFePO4) HEV Battery Using HPPC Test

2021-09-15
2021-28-0121
Recently, Hybrid electric vehicles have become significant. Electric vehicle is still in its infancy while grappling with multiple solutions to its problem of range anxiety and heavy weight. It makes HEV the viable and intermediate solution which can facilitate the transition. The battery behaviour is grossly defined by its dependence on variation due to temperature change. Hence, this present work focuses on understanding thermal characterization & pure behaviour of the Li-Ion Phosphate (LiFePO4) P1-HEV battery using the HPPC test. This becomes imperative because of the varying driver demands and ambient temperatures over the use during the day. Thus, the current drawn from battery varies (different C rate) leading to heat generation (I2R heating) within the pack/individual cell. Cyclically, impacting the cell performance and battery cycle life.
Technical Paper

Development of Full Car Model for Ride Analysis of Light Duty Bus using MATLAB Simulink

2021-09-22
2021-26-0088
Ride is considered to be one of the crucial criterion for evaluating the performance of a vehicle. Automobile industry is striving for improvement in designs to provide superior passenger comfort in Commercial vehicles segment. In Industry, Quarter-car model has been used for years to study the vehicle’s ride dynamics. But due to lower DOF involved in quarter car, the output accuracy is somewhat compromised. This paper aims in development of a 7 DOF full-car Model to perform the ride- comfort analysis for Light Duty 4*2 Commercial Bus using MATLAB Simulink which can be used to tune the suspension design to meet the required ride-comfort criteria. Firstly, experimental data and Physical Parameters are collected by performing Practical Test on commercial Bus on different road profiles. Secondly, a Full Car Mathematical Model with 7 DOF has been developed for a bus using MATLAB Simulink R2018a.
Technical Paper

Development of Systematic Technique for Design of Electric Motor Mounting System in EV/ HEV Application

2021-09-22
2021-26-0165
Last decade has been era of environmental awareness. Various programs have launched for making devices and appliances eco-friendly. This initiative has lead automobile industry toward hybridization and now total electrification of vehicles. As electric motor is being added to automobile as a prime mover, due to high frequency vibrations along with higher torque electric motor needs to be isolated properly & carefully as this vibration can damage other automobile parts. Dynamic response of electric motor is different from response of IC engines, so use of engine mounting design method may not be suitable for designing mounting system for electric motor. First, both 4- point and 3- point mounting system are considered for analytical and experimental investigation of force and displacement transmissibility. Position and orientation of elastomeric mounts plays important role in design of mounting system for electric motor.
Technical Paper

Failure of Li-Ion 18650 Cylindrical Cells Subjected to Mechanical Loading and Computational Model Development

2021-09-22
2021-26-0318
To enhance the crashworthiness of electric vehicles, designing the optimized and safer battery pack is very essential. The deformed battery cell can result in catastrophic events like thermal runaway and thus it becomes crucial to study the mechanical response of battery cell. The goal of the research is to experimentally investigate the effect of mechanical deformation on Lithium-ion battery cell. The paper thoroughly studies the phenomenon of short circuiting at the time of failure. Various experiments are carried on 18650 cylindrical cells (NCA chemistry) under custom designed fume hood. The setup captures the failure modes of battery cell. The loading conditions have been designed considering the very possible physical conditions during crash event. The study has been done for radial compression, semicircular indentation, hemispherical indentation, flat circular indentation and case of three-point bending.
Technical Paper

Evaluation of Cable Harness of an Electric Vehicle Powertrain through Simulation

2021-09-22
2021-26-0350
The Electric Vehicles (EV) or Hybrid Electric Vehicle (HEV) has a bunch of electrical/electronic components and its operation give rise to complicated EMI/EMC issues. The Power Electronics Module (PEM), comprising of DC-DC convertor/invertor and Battery Management Unit (BMU), is driving the motor to propel the vehicle. “Battery Pack Module” powers these units through cables. The fast switching of these circuit elements present in the system leads to noise propagation through the cables. These noise signals give rise to various Electromagnetic (EM) related issues in the cable harness of vehicle. It is essential that these cables should not interfere with other electronic components and also does not get effected by external EM disturbances.
Technical Paper

Smart and Compact Simulation Tool for Electric Vehicle Component Sizing

2021-09-22
2021-26-0419
Electric Vehicles (EVs), with its inherent advantage of zero tailpipe emissions, are gaining importance because of aggressive push from government not only to reduce air pollution but also to reduce dependency of fossil fuel. EVs and necessary charging infrastructure along with ‘connected’ technology is redefining mobility. Considering the fast growing EV market, it becomes important for an EV Powertrain Architect to design and develop a powertrain solution having low engineering efforts and satisfying business, market and regulatory requirements at a competitive price. This paper presents a compact, flexible, convenient and smart featured simulation tool for an EV Powertrain Architect for estimating the specifications of key powertrain components such as traction battery and electric motor. The proposed tool takes into consideration the end-user as well as the regulatory requirements of range, maximum speed, acceleration and gradeability.
Technical Paper

Aluminium for Curbing GHG Emissions in Indian Public Transport Buses

2020-04-14
2020-01-1050
Major cause of air pollution in the world is due to burning of fossil fuels for transport application; around 23% GHG emissions are produced due to transport sector. Likewise, the major cause of air pollution in Indian cities is also due to transport sector. Marginal improvement in the fuel economy provide profound impact on surrounding air quality and lightweighting of vehicle mass is the key factor in improving fuel economy. The paper describes robust and integrated approach used for design and development of lightweight bus structures for Indian city bus applications. An attempt is made to demonstrate the use of environment friendly material like aluminium in development of lightweight superstrutured city buses for India. Exercise involved design, development and prototype manufacturing of 12m Low Entry and 12m Semi Low Floor (SLF) bus models.
Journal Article

Front Under Run Protection Device Strength Test Certification Through FE Simulations

2011-04-12
2011-01-0529
Passive safety regulations specify minimum safety performance requirements of vehicle in terms of protecting its occupants and other road users in accident scenarios. Currently for majority cases, the compliance of vehicle design to passive safety regulations is assessed through physical testing. With increased number of products and more comprehensive passive safety requirements, the complexity of certification is getting challenged due to high cost involved in prototype parts and the market pressures for early product introduction through reduced product development timelines. One of the ways for addressing this challenge is to promote CAE based certification of vehicle designs for regulatory compliance. Since accuracy of CAE predictions have improved over a period of time, such an approach is accepted for few regulations like ECE-R 66/01, AIS069 etc which involves only loadings of the structures.
Technical Paper

Measurement and Prediction of Sound Absorption of Sound Package Materials in Large and Small Reverberation Chambers

2017-01-10
2017-26-0195
The paper discusses the methodology for measuring the sound absorption of sound package materials in a different sizes of reverberation chambers. The large reverberation chamber is based on test methods and requirements as per ASTM C423 and ISO 354 standards. Both the test standards are similar and recommend a reverberation chamber volume of at least 125 m3 and 200 m3 respectively for sound absorption measurements from 100 Hz to 5000 Hz. The test sample size requirements are from 5.5 to 6.7 m2 as per ASTM C423 and 10 to 12 m2 as per ISO 354. In the automotive sector passenger car, heavy truck, and commercial vehicle, the parts that are used are much smaller in size than the size prescribed in both the standards. The requirement is to study the critical parameters such as the chamber volume, sample size, reverberation time and cut-off frequency etc. which are affecting the sound absorption property of acoustic material.
Technical Paper

Integrated Approach for Development of Air Suspension System for a SUV Category Vehicle Using Analytical and Experimental Tools

2017-01-10
2017-26-0340
Air suspension systems had been introduced in automobiles since 1950s. These systems are being explored to improve the ride comfort, handling stability and also serve as a medium for better cargo protection. These system are well developed for buses and high end passenger sedans, also have feasibility for adapting for wide range of configurations of suspension system and axle. Passenger cars and Sports Utility Vehicle (SUV) pickup category of vehicle offers different challenges such as space availability, spring selection and characterization that need to be addressed for successful implementation of air suspension in these category vehicles. This work defines methodology to implement air suspension system in SUV Pickup category vehicle. Paper work includes concept study, mathematical co-relation, and prediction of air spring characteristics and integration of experimental and analytical tool for development of air suspension system.
Technical Paper

The Application of the Simulation Techniques to Predict and Reduce the Interior Noise in Bus Development

2012-04-16
2012-01-0219
In order to reduce development time and costs, application of numerical prediction techniques has become common practice in the automotive industry. Among the wide range of simulation applications, prediction of the vehicle interior noise is still one of the most challenging ones. The Finite Element Method (FEM) is well known for acoustic predictions in the low-frequency range. As part of the development of a full sized bus model, noise levels at Driver Ear Levels (DEL) and Passenger Ear Levels (PEL) were targeted. The structural and acoustic analysis were performed for a bus to reduce interior noise in the low-frequency range. Various counter measures were identified and structural optimization/modifications were performed from virtual simulation to reduce the DEL and PEL. Structure-borne noise due to both road-induced vibration and engine vibration were considered by using FEM techniques.
Technical Paper

Development of Battery Management System for Hybrid Electric Two Wheeler

2018-04-03
2018-01-0430
The use of Hybrid Electric Vehicles (HEV) will become imperative to meet the emission challenges. HEV have two power sources-fossil fuels driven I.C. Engine and the battery based drive. Battery technologies have seen a tremendous development, and therefore HEV’s have been benefited. Even as the battery capacities have improved, maintaining and monitoring their health has been a challenge. This research paper uses open-source platform to build a BMS. The flexibility in the implementation of the system has helped in the rapid prototyping of the system. The BMS system was evaluated on a scaled-down electric toy car for its performance and sustainability. The BMS was evaluated for reverse polarity, protection against overcharge, short-circuit, deep discharge and overload on lead acid battery. It also includes temperature monitoring of the batteries. This proposed system is evaluated on the in-house HEV two-wheeler. The initial results are promising.
Technical Paper

Design and Development of Radiator Fan for Automotive Application

2012-04-16
2012-01-0555
A methodology for design and development of radiator cooling fan is developed with an objective to improve underhood thermal management. For this purpose an Axial Fan Design Software has been developed which is based on Arbitrary Vortex Flow theory. The software is useful for obtaining initial blade design for the given basic functional requirements in terms of Airflow, Pressure Rise and Speed which defines the operating point of the fan. CFD analysis of the initial fan design is then carried out to predict the fan performance curve. Computation model resembles a fan set up in a wind tunnel. Further, Parametric Optimization is carried out using CFD to meet the functional requirements. A Rapid Prototype sample of the optimized fan design is manufactured and tested in a fan test rig made as per AMCA 210-99 standard to evaluate the fan performance curve and the power consumption.
Technical Paper

A Unique Approach for Motion Planning for Autonomous Vehicle Using Modified Lattice Planner

2021-09-22
2021-26-0121
In order to travel in a chaotic and dynamic environment, an autonomous vehicle requires a motion plan. This motion plan ensures collision free, optimum travel without violating any traffic rules. The optimum solution for path planning problem exists in higher dimensions, however, with the help of useful heuristics the problem can be solved in real time, which is required for real time operation of an autonomous vehicle. There are different well established techniques available to plan a collision free kinematically traversable path. One of such techniques is called conformal Lattice planner. However, the legacy version of conformal lattice planner is not optimized and also is prone to fail under specific dynamic environment conditions. Moreover, the legacy version of conformal lattice planner is also not road aware. Due to this reason it is a semi optimized way to solve the motion planning problem.
Technical Paper

Performance Evaluation of EV/HEV Systems Using xEV Offline Simulator

2017-01-10
2017-26-0097
This paper introduces xEV Simulator- A MATLAB based simulator platform capable of analyzing EV/HEV powertrain system in both backward and forward modelling. xEV Simulator employs Forward Simulation for drive-cycle performance evaluations and Backward simulation for powertrain component sizing and support xEV powertrain design. The powertrain subsystems are modelled in Simulink. This enables the model based system simulation and further controller prototyping and HiL testing. xEV Offline Simulator GUI enables user to simulate standard EV/HEV configurations with standard drive-cycles. The model parameters of different component subsystems can be configured. The Backward modelling and simulation support the estimation of subsystem values like Propulsion motor, Energy storage, etc., to perform as per the drive-cycle requirement.
Technical Paper

Mechanical and Aerodynamic Noise Prediction for Electric Vehicle Traction Motor and Its Validation

2017-01-10
2017-26-0270
With emission norms getting more and more stringent, the trend is shifting towards electric and hybrid vehicles. Electric motor replaces engine as the prime mover in these vehicles. Though these vehicles are quieter compared to their engine counterpart, they exhibit certain annoying sound quality perception. There is no standard methodology to predict the noise levels of these motors. Electric motor noise comprises of mainly three sources viz., Aerodynamic, Electromagnetic and Mechanical. A methodology has been developed to predict two major noise sources of electric motor out of the three above viz. Mechanical and Aerodynamic noise. These two noise sources are responsible for the tonal noise in an electric motor. Aerodynamic noise arises most often around the fan, or in the vicinity of the machine that behaves like a fan. This noise is predominant at higher motor speed and also in electric vehicle due to higher speed fluctuation.
Technical Paper

Methodology for Prediction of Windscreen Wiping Area through Simulation

2017-01-10
2017-26-0257
Front windscreen wiping test is legal requirement for all motor vehicles as per standards like IS15802:2008 [1], IS15804:2008 [2] in India. This test requires windscreen mock-up/actual vehicle to be tested along with all wiping mechanisms such that minimum percentage areas to be wiped should meet the requirements specified in the IS standard. From manufacturer’s perspective this involves investment of lot of time and cost to arrive at the final design solution in order to meet the wiping requirements. The work scope in this paper is limited to bus category of vehicles. The methodology presented in this paper would enable quick design solutions for bus body builders or manufacturers to meet the wiping requirements specified in IS standard. The methodology presented in this paper was developed to carry out windscreen wiping test through commercially available simulation software.
Technical Paper

Simulation Based Design and Development of Test Track for ADAS Functions Validation and Verification with Respect to Indian Scenario

2019-01-09
2019-26-0100
Autonomous vehicles perform various functions with their own control strategies. Functions like Lane Departure Warning (LDW), Lane Keeping system (LKS) and Forward Collision Warning System (FCWS) requires special test tracks for their verification and validation. These test track requirements change with region to region according to available infrastructure. This paper deals with the design and development of test tracks for different ADAS functions verification and validation of Indian specific scenarios and its simulation in IPG CarMaker. The test track conceptualization has been done through the understanding and study of different international standards and geometry of test tracks for Indian conditions have been developed. IPG CarMaker software tool is used for creation of test track, and same track is used for simulation of above ADAS functions in IPG CarMaker.
Technical Paper

Design and Development of a Retrofit Solution for Converting a Conventional LCV into Parallel Hybrid Electric Vehicle

2019-01-09
2019-26-0117
In today’s scenario, the emission norms are getting stringent day by day due to an increased level of pollution. The world is shifting towards low carbon footprint which made it necessary to adopt efficient technologies with fewer emissions. The hybridization of vehicles has resulted in improved efficiency with lower emissions which can fulfil the near future emission norms. Retrofitting of hybrid components into a conventional IC engine vehicle is so far the best way to achieve better performance both economically and technologically. This research is primarily focused on the design and development of a novel retrofit solution of P3x architecture for the light commercial vehicle. This retrofit solution is different from other hybrid solutions in terms of powertrain. It contains an innovative add-on powertrain along with the existing powertrain. This additional powertrain consists of a pair of helical gears followed by a chain and sprocket as a coupler for traction motor.
Technical Paper

Pass-By Noise Reduction of Light Commercial Vehicle (LCV)

2018-06-13
2018-01-1539
The increasing in popularity of Light Commercial Vehicles (LCV) segment is an emerging trend in the commercial vehicle industry. LCVs are very efficient and cost-effective for transportation of materials and good on short distances or loads of lesser weights. Sensing the market potential, many auto companies have developed LCVs recently. Since LCV segment is price sensitive, low cost single cylinder water cooled diesel engine being used as prime mover. High noise & vibration is inherent feature of diesel engine & it is predominant in single cylinder diesel engine. In order to retain low cost of product, less attention is given on overall noise of vehicle. Also, it is challenging to meet the regulatory limits of Pass-by Noise (PBN) for this category of vehicle. This paper is a development work done for pass-by noise reduction of a diesel powered single cylinder LCV vehicle. A prototype vehicle needs to meet the legislative pass-by noise requirement when tested as per IS0 362 / IS 3028.
X