Refine Your Search

Topic

Author

Search Results

Journal Article

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

2013-05-13
2013-01-1974
The identification of the dominant noise sources in diesel engines and the assessment of their contribution to far-field noise is a process that can involve both fired and motored testing. In the present work, the cross-spectral densities of signals from cylinder pressure transducers, accelerometers mounted on the engine surface, and microphones (in the near and far fields), were used to identify dominant noise sources and estimate the transfer paths from the various “inputs” (i.e., the cylinder pressures, the accelerometers and the near field microphones) to the far field microphones. The method is based on singular value decomposition of the input cross-spectral matrix to relate the input measurements to independent virtual sources. The frequencies at which a particular input is strongly affected by an independent source are highlighted, and with knowledge of transducer locations, inferences can be drawn as to possible noise source mechanisms.
Technical Paper

Combined CFD and CAA Simulations with Impedance Boundary Conditions

2021-08-31
2021-01-1048
In computational fluid dynamic (CFD) and computational aeroacoustics (CAA) simulations, the wall surface is normally treated as a purely reflective wall. However, some surface treatments are usually applied in experiments. Thus, the acoustic simulations cannot be validated by experimental results. One of the major challenges is how to define acoustically boundary conditions in a well-posed way. In aeroacoustics analysis, impedance is a quantity to characterize reflectivity and absorption of an acoustically treated surface, which may be introduced into the numerical models as a frequency-domain boundary condition. However, CFD and CAA simulations are time-domain computations, meaning the frequency-domain impedance boundary condition cannot be adopted directly. Several methods, including the three-parameter model, the z-transform method and the reflection coefficient model, were developed.
Journal Article

Prechamber Hot Jet Ignition of Ultra-Lean H2/Air Mixtures: Effect of Supersonic Jets and Combustion Instability

2016-04-05
2016-01-0795
An experiment has been developed to investigate the ignition characteristics of ultra-lean premixed H2/air mixtures by a supersonic hot jet. The hot jet is generated by combustion of a stoichiometric mixture in a small prechamber. The apparatus adopted a dual-chamber design in which a small-volume (1% of the main chamber by volume) prechamber was installed within a large-volume main chamber. A small orifice (nozzle) connects the two chambers. Spark initiated combustion inside the prechamber causes a pressure rise and pushes the gases though the nozzle, resulting in a hot jet that would ignite the lean mixture in the main chamber. Simultaneous high-speed Schlieren photography and OH* Chemiluminescence were applied to visualize the jet penetration and the ignition processes inside the main chamber. Hot Wire Pyrometry (HWP) was used to measure temperature distribution of the transient hot jet.
Technical Paper

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method

2020-04-14
2020-01-0222
Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry in the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of cracks reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting.
Journal Article

Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling

2012-09-10
2012-01-1868
Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

2007-07-09
2007-01-3187
In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Free Gas Pulsation of a Helmholtz Resonator Attached to a Thin Muffler Element

1998-02-23
980281
Helmholtz resonator has been used in industry for a long time to reduce the noise from exhaust system in vehicle or machinery. Numerous investigations have been done in the past to study the effect of a Helmholtz resonator connected to a pipeline. A general procedure for the analysis of curved or flat, thin two dimensional gas cavities such as thin compressor or engine manifolds or so-called thin shell type muffler elements, which can efficiently utilize the limited space of hermetically sealed compressors or small engine compartments, has been developed by the authors, as long as the thickness of the cavities is substantially small compared to the shortest wavelength of interest. However, to the authors' knowledge, a Helmholtz resonator attached to a rectangular thin muffler element, which is similar to a refrigeration compressor muffler, has not been analyzed.
Technical Paper

Modeling of Machine Tool Dynamics and Chatter Prediction

1998-06-02
981840
Dynamics of machine tool components play a critical role in the outcome of machining processes. This paper addresses several important issues on machine tool and machining dynamics. It illustrates the dynamic behavior of structural components under operating conditions and presents an improved technique for modeling structural non-linearity. It also describes spindle modeling capability that has been developed to predict dynamic and thermal characteristics of spindle systems. Finally, the paper discusses the impact of non-linear dynamics on machining stability.
Technical Paper

A Novel Suspended Liner Test Apparatus for Friction and Side Force Measurement with Corresponding Modeling

2006-11-13
2006-32-0041
An experimental apparatus and a numerical model have been designed and developed to examine the lubrication condition and frictional losses at the piston and cylinder interface. The experimental apparatus utilizes components from a single cylinder, ten horsepower engine in a novel suspended liner arrangement. The test rig has been specifically designed to reduce the number of operating variables while utilizing actual components and geometry. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with experimental measurements and provide further insight into the sources of frictional losses. The results demonstrate the effects of speed and viscosity on the overall friction losses at the piston and cylinder liner interface. Comparisons between the experimental and analytical results show good agreement.
Technical Paper

Model-based Development for Event-driven Applications using MATLAB: Audio Playback Case Study

2007-04-16
2007-01-0783
Audio playbacks are mechanisms which read data from a storage medium and produce commands and signals which an audio system turns into music. Playbacks are constantly changed to meet market demands, requiring that the control software be updated quickly and efficiently. This paper reviews a 12 month project using the MATLAB/Simulink/Stateflow environment for model-based development, system simulation, autocode generation, and hardware-in-the-loop (HIL) verification for playbacks which read music CDs or MP3 disks. Our team began with a “clean slate” approach to playback architecture, and demonstrated working units running production-ready code. This modular, layered architecture enables rapid development and verification of new playback mechanisms, thereby reducing the time needed to evaluate playback mechanisms and integrate into a complete infotainment system.
Technical Paper

Design of a High-Bandwidth, Low-Cost Hydrostatic Absorption Dynamometer with Electronic Load Control

2009-10-06
2009-01-2846
A low-cost hydrostatic absorption dynamometer has been developed for small to medium sized engines. The dynamometer was designed and built by students to support student projects and educational activities. The availability of such a dynamometer permits engine break-in cycles, performance testing, and laboratory instruction in the areas of engines, fuels, sensors, and data acquisition. The dynamometer, capable of loading engines up to 60kW at 155Nm and 3600rpm, incorporates a two-section gear pump and an electronically operated proportional pressure control valve to develop and control the load. A bypass valve permits the use of only one pump section, allowing increased fidelity of load control at lower torque levels. Torque is measured directly on the drive shaft with a strain gage. Torque and speed signals are transmitted by an inductively-powered collar mounted to the dynamometer drive shaft. Pressure transducers at the pump inlet and pump outlet allow secondary load measurement.
Technical Paper

Modeling and Optimization of the Control Strategy for the Hydraulic System of an Articulated Boom Lift

2010-10-05
2010-01-2006
This paper describes the numerical modeling of the hydraulic circuit of a self-moving boom lift. Boom lifts consist of several hydraulic actuators, each of them performs a specific movement. Hydraulic systems for lifting applications must ensure consistent performance no matter what the load and how many users are in operation at the same time. Common solutions comprise a fixed or a variable displacement pump with load-sensing control strategy. Instead, the hydraulic circuit studied in this paper includes a fixed displacement pump and an innovative (patented) proportional valve assembly. Each proportional valve (one for each user) permits a flow regulation for all typical load conditions and movement simultaneously. The study of the hydraulic system required a detailed modeling of some components such as: the overcenter valves, for the control of the assistive loads; the proportional valve, which keeps a constant flow independently of pressure drop across itself.
Technical Paper

Caterpillar Automatic Code Generation

2004-03-08
2004-01-0894
Automatic code generation from models is actively used at Caterpillar for powertrain and machine control development. This technology was needed to satisfy the industry's demands for both increased software feature content, and its added complexity, and a short turn-around time. A pilot development effort was employed initially to roll out this new technology and shape the deployment strategy. As a result of a series of successful projects involving rapid prototyping and production code generation, Caterpillar will deploy MathWorks modeling and code generation products as their department-wide production development capability. The data collected indicated a reduction of person hours by a factor of 2 to 4 depending on the project and a reduction of calendar time by a factor of greater than 2. This paper discusses the challenges, results, and lessons learned, during this pilot effort from the perspectives of both Caterpillar and The MathWorks.
Technical Paper

Experimental Modal Analysis of Automotive Exhaust Structures

2001-03-05
2001-01-0662
Experimental modal analysis (EMA) provides many parameters that are required in numerical modeling of dynamic and vibratory behavior of structures. This paper discusses EMA on an exhaust system of an off-road car. The exhaust structure is tested under three boundary conditions: free-free, supported with two elastomeric mounts, and mounted to the car. The free-free modal parameters are compared to finite element results. The two-mount tests are done with the mounts fixed to a rigid and heavy frame. The rigidity of the frame is verified experimentally. The on-car test is done with realistic boundary conditions, where the exhaust structure is fixed to the engine manifold as well as the two elastomeric mounts. The two-mount and the on-car tests result in highly complex mode shapes.
Technical Paper

Predictions of On-Engine Efficiency for the Radial Turbine of a Pulse Turbocharged Engine

2001-03-05
2001-01-1238
Modern pulse-turbocharged systems produce a turbine operating environment that is dominated by unsteady flow. Effective utilization of the unsteady exhaust gas energy content at the turbine inlet is critical to achieving optimum system efficiency. This work presents predictions for turbocharger unsteady performance from a model based on the Euler equations with source terms (EEST). This approach allows the time-accurate performance of the turbine to be determined, allowing comparisons of actual energy utilization and that estimated from steady flow performance maps.
Technical Paper

Modeling of Nonlinear Elastomeric Mounts. Part 1: Dynamic Testing and Parameter Identification

2001-03-05
2001-01-0042
A methodology for modeling elastomeric mounts as nonlinear lumped parameter models is discussed. A key feature of this methodology is that it integrates dynamic test results under different conditions into the model. The first step is to model the mount as a linear model that is simple but reproduces accurately results from dynamic tests under small excitations. Frequency Response Functions (FRF) enables systematic calculation of the parameters for the model. Under more realistic excitation, the mount exhibits non-linearity, which is investigated in the next step. For nonlinear structures, a simple and intuitive method is to use time-domain force-displacement (F-x) curves. Experiments to obtain the F-x curves involve controlling the displacement excitation and measuring the induced forces. From the F-x curves, stiffness and damping parameters are obtained with an optimization technique.
Technical Paper

Analysis of Switched Capacitive Machines for Aerospace Applications

2002-10-29
2002-01-3182
Electric machinery is typically based upon the interaction of magnetic fields and current to produce electromagnetic force or torque. However, force and torque can also be produced through the use of electric fields. The purpose of this investigation is to briefly analyze the use of a switched capacitance electric field based machine to see if it may have aerospace applications for use as either propulsion motor for unmanned aerospace vehicle (UAV) or lightweight flywheel applications for aerospace applications. It is shown that although its use as a hub propulsion motor is not feasible, it may be a candidate for use in a power flywheel energy storage system.
Technical Paper

An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper

2002-12-02
2002-01-3337
A mathematical model of a gas-charged mono-tube racing damper is presented. The model includes bleed orifice, piston leakage, and shim stack flows. It also includes models of the floating piston and the stiffness characteristics of the shim stacks. The model is validated with experimental tests on an Ohlins WCJ 22/6 damper and shown to be accurate. The model is exercised to show the effects of tuning on damper performance. The important results of the exercise are 1) the pressure variation on the compression side of the piston is insignificant relative to that on the rebound side because of the gas charge, 2) valve shim stiffness can be successfully modeled using stacked thin circular plates, 3) bleed orifice settings dominate the low speed regime, and 4) shim stack stiffness dominates the high speed regime.
X