Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Network I/O and System Considerations

1995-02-01
950036
The J1850 bus requirements promote an unique and well characterized physical layer behavior developed through the learning curve of previous multiplex solutions. Design requirements such as: 1) Reliably interconnecting all of the vehicle's most complex modules, 2) Consistently withstanding the vehicle's harsh environment, and 3) Meeting SAE's functionality requirements, were all a formidable task to achieve. This paper will highlight the path taken to achieve a J1850 Bus interface which successfully met all of the design and functional goals. Chrysler's C2D insights will be discussed and related to goals for J1850. Other design considerations will also be discussed such as EMC issues, custom test equipment, and vehicle and component testability. In turn, silicon processes with special structures and topologies will be discussed relating the specific design with the needed electrical behavior. The HIP7020 J1850 BUS TRANSCEIVER I/O for MULTIPLEX WIRING accomplishes these requirements.
Technical Paper

OPNET J1850 Network Simulator

1995-02-01
950037
MIL 3's OPNET simulator was used to model Chrysler's J1850 bus. Modeled were both J1850 bus characteristics and those portions of control modules (e.g., the engine controller) which communicate on the bus. Current Chrysler control module algorithms and proposed Chrysler J1850 message formats were used to design the control module models. The control module models include all messages which are transmitted at fixed intervals over the J1850 bus. The effects of function-based messages (e.g., messages to be transmitted on a particular sensor or push-button reading) on system load were investigated by transmitting an additional message with a fixed, relatively high priority at 50 millisecond intervals.
Technical Paper

The Processes and Technologies Used in the Design, Build, and Test of the Dodge Stratus Super Touring Car

1996-12-01
962505
Chrysler is a company run by automotive enthusiasts, and its motorsports programs are an integral part of the company's corporate, brand, and product development process. Chrysler's motorsports programs are executed from within its Platform Team system by the same engineers, using the same processes and facilities as production vehicle programs. This results in teaching and inspiring engineers, designers, and technicians, as well as providing genuine technical benefits to the company. This paper tells the “how” story of the design, build, and test of the Dodge Stratus Super Touring Car. Detailed results have been purposely omitted from the paper due to the competitive nature of motor racing.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
Technical Paper

Chrysler Evaporation Control System The Vapor Saver for 1970

1970-02-01
700150
A system for controlling gasoline evaporation losses from 1970 model Chrysler Corp. cars and light trucks was developed, certified for sale in California, and put into production. Evaporation losses from both the carburetor and the fuel tank are conducted to the engine crankcase for storage while the engine is shut down. The vapors are removed from the crankcase and utilized in the combustion process during subsequent vehicle operation. Particularly interesting in this unique, no-moving parts system, are the reliability and durability, and the vapor-liquid separator “standpipe.”
Technical Paper

Digital Recording of Vehicle Crash Data

1981-06-01
810810
This paper discusses the development and implementation of a 16 channel data acquisition system for high “G” impact testing which includes a self-contained, on-board data acquisition unit, a programmer-exerciser and debriefing subsystems. The microprocessor controlled, on-board unit contains all signal conditioning, A/D conversion hardware and logic to store 4K 12 bit samples of data per channel. This unit will debrief into an oscilloscope, a desk-top computer or a large disk-based minicomputer system. Advantages over previous systems include the elimination of costly hardware (such as umbilical cables and recorders), and a reduction in pre-test preparation and data processing time.
Technical Paper

Developments in Dynamometer Control Methods

1972-02-01
720453
The application of automation to dynamometer testing of engines has led to the development of specialized circuits and techniques to compensate for limitations inherent within the electromechanical systems used to implement automation theory. Stable, quick response to a programmed speed change has been achieved for engine-automatic transmission testing by the use of a parallel feedback technique. Vehicle simulation using analog computer circuitry and road test data is used to calculate torque requirements from programmed acceleration-time and velocity-time curves. Similar circuitry is used to calculate engine-transmission output torque from dynamometer parameters.
Technical Paper

The Development of Auto Temp II

1972-02-01
720288
The development of the AUTO TEMP II Temperature Control System used in Chrysler Corp. vehicles is summarized. A description of the design, development, function, and manufacturing aspects of the control system is presented, with emphasis on unique control parameters, reliability, serviceability, and check-out of production assemblies. Auto Temp II was developed by Chrysler in conjunction with Ranco Incorporated. The servo-controlled, closed-loop system, which has a sensitivity of 0.5 F, utilizes a water-flow control valve for temperature control, along with a cold engine lockout. The basic components are: sensor string, servo, and amplifier. All automatic functions involving control of mass flow rate, temperature, and distribution of the air entering the vehicle, are encompassed in one control unit. All components are mechanically linked through the gear train and are responsive to the amplifier through the feedback potentiometer.
Technical Paper

The New Chrysler Wind Tunnel

1973-02-01
730239
The Chrysler wind tunnel is a closed-circuit, single-return, semiopen jet facility used for performing engine cooling, transmission cooling, engine compartment airflow, underhood component temperature, air-conditioning, and other types of tests. It operates over a 0-120 mph speed range with 400 hp rear-wheel power absorption capacity. Special provisions have been made for idle, city traffic, and tail wind tests. Facility controls provide precise set-point capability, and comprehensive instrumentation and data acquisition systems permit measurement of many parameters and real time data reduction.
Technical Paper

Chrysler Microprocessor Spark Advance Control

1978-02-01
780117
Electronics suitable for engine control applications has steadily evolved from analog control systems to microprocessor based designs. The change in technology required in switching from analog to microprocessors has required sensor development, new analog to digital conversion techniques, and development of custom input/output circuits suitable for automotive applications. By proper design of the microcomputer system, an engine control unit can be developed that is cost effective compared to conventional analog circuit techniques while providing additional flexibility. The primary limitation of a digital approach is the long lead time required to change the ROM pattern. This lead time can be reduced by combining PROM and ROM in the same system.
Technical Paper

There's Gold in Your Dirt

1962-01-01
620125
Building maintenance and sanitation provides economic opportunities for good management through an Industrial Engineering approach. The Engineering Div. of Chrysler Corp. gained million dollar savings with these methods. This Industrial Engineering approach is indicated by its sanitation program which includes work sampling, methods development, performance goals, measurement of what is to be cleaned, work load determination, detailed schedules, detailed material control, quality measurement, supervisory training, employee training, and detailed supervisory follow-up. Although valuable individually, these methods together provide a gold mine for progress and cost saving.
Technical Paper

The Chrysler “Sure-Brake” - The First Production Four-Wheel Anti-Skid System

1971-02-01
710248
The paper outlines testing, development, and operation of the first production four-wheel slip control system for passenger cars in the United States. The Chrysler Corp. calls the system “Sure-Brake,” but it is more generally known as “anti-skid.” The first portion of the paper deals with considerations that led Chrysler into the Sure-Brake system, the philosophy behind the system, and a detailed explanation of its operation. The second portion deals with the development and testing of the system, leading to its release as an option on the 1971 Imperial. The testing program introduced a new dimension to brake engineering. Before the advent of wheel slip control systems, many thousands of brake tests were conducted but were always terminated at the point of skid. These tests were also conducted mainly on black top or concrete roads. For the first time, thousands of stops were made at maximum deceleration on every available surface.
X