Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Applying Virtual Statistical Modeling for Vehicle Dynamics

2010-04-12
2010-01-0019
Dimensional variation simulation is a computer aided engineering (CAE) method that analyzes the statistical efforts of the component variation to the quality of the final assembly. The traditional tolerance analysis method and commercial CAE software are often based on the assumptions of the rigid part assembly. However, the vehicle functional attributes, such as, ride and handling, NVH, durability and reliability, require understanding the assembly quality under various dynamic conditions while achieving vehicle dimensional clearance targets. This paper presents the methods in evaluating and analyzing the impacts of the assembly variations for the vehicle dynamic performance. Basic linear tolerance stack method and advanced study that applies various CAE tools for the virtual quality analysis in the product and process design will be discussed.
Journal Article

CAE Applications and Techniques used in Calculating the Snaps Insertions and Retentions Efforts in Automotive Trims

2014-04-01
2014-01-1032
A snap-fit is a form-fitting joint, which is used to assemble plastic parts together. Snap-fits are available in different forms like a projecting clip, thicker section or legs in one part, and it is assembled to another part through holes, undercuts or recesses. The main function of the snap-fit is to hold the mating components, and it should withstand the vibration and durability loads. Snap-fits are easy to assemble, and should not fail during the assembling process. Based on the design, these joints may be separable or non-separable. The non- separable joints will withstand the loads till failure, while separable joints will withstand only for the design load. The insertion and the retention force calculation for the snaps are very essential for snap-fit design. The finite element analysis plays a very important role in finding the insertion and the retention force values, and also to predict the failure of the snaps and the mating components during this process.
Technical Paper

Wheel Joint Analytical System Approach to Evaluate Brake Rotor Mounted LRO Sensitivity Effects

2007-10-07
2007-01-3947
Many different studies have been performed to understand brake roughness, and in particular how brake rotor Disc Thickness Variation (DTV) is generated. The intent of this paper is to analytically explore through non- linear finite element modeling methods the effects of wheel joint variables on brake rotor mounted Lateral RunOut (LRO). The phenomenon of LRO is believed to be a primary contributor to DTV generation and resulting brake roughness. CAE analyses were conducted in non-linear contact mechanics in which real contacts between components exist. Various joint designs were simulated to compare rotor LRO and coning. Several parameters inherent to the design of wheel joints were varied and studied. A comparative approach was used to develop specific design recommendations for LRO reductions.
Technical Paper

Adaptive nth Order Lookup Table used in Transmission Double Swap Shift Control

2008-04-14
2008-01-0538
The new Chrysler six-speed transaxle makes use of an underdrive assembly to extend a four-speed automatic transmission to six-speed. It is achieved by introducing double-swap shifts. During double-swap shift, learning the initial clutch torque capacity of the underdrive assembly's subsystem has a direct impact on the shift quality. A new method is proposed to compute and learn the initial clutch torque capacity of the releasing element. In this paper, we will outline a new mathematical method to compute and learn the accurate starting point of the clutch torque capacity for double swap shift control. The performance of the shift is demonstrated and the importance of the adaptation to shift quality is highlighted. An nth order lookup table is presented; this table contains n rows and m columns. Every row defines a relationship between the dependent variable such as actuator duty cycle and one independent variable such as transmission oil temperature, input torque or battery voltage.
Technical Paper

A Case Study in Structural Optimization of an Automotive Body-In-White Design

2008-04-14
2008-01-0880
A process for simultaneously optimizing the mechanical performance and minimizing the weight of an automotive body-in-white will be developed herein. The process begins with appropriate load path definition though calculation of an optimized topology. Load paths are then converted to sheet metal, and initial critical cross sections are sized and shaped based on packaging, engineering judgment, and stress and stiffness approximations. As a general direction of design, section requirements are based on an overall vehicle “design for stiffness first” philosophy. Design for impact and durability requirements, which generally call for strength rather than stiffness, are then addressed by judicious application of the most recently developed automotive grade advanced high strength steels. Sheet metal gages, including tailored blanks design, are selected via experience and topometry optimization studies.
Technical Paper

Application of Tuned Mass Damper to Address Discrete Excitation Away From Primary Resonance Frequency of a Structure

2009-05-19
2009-01-2125
Tuned mass dampers (TMDs) or vibration absorbers are widely used in the industry to address various NVH issues, wherein, tactile-vibration or noise mitigation is desired. TMDs can be classified into two categories, namely, tuned-to-resonance and tuned-to-discrete-excitation. An overwhelming majority of TMD applications found in the industry belong to the tuned-to-resonance category, so much of information is available on design considerations of such dampers; however, little is published regarding design considerations of dampers tuned-to-discrete-excitation. During this study, a problem was solved that occurred at a discrete excitation frequency away from the primary resonance frequency of a steering column-wheel assembly. A solution was developed in multiple stages. First the effects of various factors such as mass and damping were analyzed by using a closed-form solution.
Technical Paper

Optimizing the Fastening Strategy & Joint Integrity to Reduce Stresses in Ring Gear Bolts on Rear Differential Assemblies

2009-04-20
2009-01-0411
Ring gear bolts in differentials are often modified in size to accommodate the additional clamp load that is required due to an increase in torque from a vehicle's powertrain. Depending on a given program several constraints need to be considered. These include cost, validation time, reliability / durability and timing for implementation. In this paper, a Finite Element Analysis (FEA) procedure for analyzing stresses in ring gear bolts within a rear differential assembly is outlined and the computational results are then compared to quasi-static bench test results that were developed to measure bending and tension loads in the ring gear bolts during loading and unloading of the axle pinion. A dynamometer test is then developed to duplicate the failure mode and provide a comparison of the design changes proposed and the expected improvement in durability.
Technical Paper

Shudder Durability of a Wet Launch Clutch Part I – Thermal Study and Development of Durability Test Profile

2009-04-20
2009-01-0329
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. A test bench was designed. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle–parallel) and two separator plate conditions (nitrided and non–nitrided) were considered. Considerable improvement in performance was seen by changing from CVT fluid* to DCT fluid*. A thermal analysis based on thermal model predictions and measurement correlations was conducted. Comparisons of clutch configurations with four and five friction plates were done. The waffle and radial groove pattern showed better heat transfer than the waffle–parallel groove pattern.
Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Journal Article

Shudder Durability of a Wet Launch Clutch Part II - Durability Study

2009-04-20
2009-01-0330
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle-parallel) and two separator plate conditions (nitrided and non-nitrided) were considered. Durability testing consisted of a test profile, with 110 kJ energy per test cycle, developed earlier in this project. Materials A, B and C with nitrided separator plates reached the end of test criteria for the torque gradient and showed shudder. Materials B and C were more wear resistant as compared to materials A and D. The loss of friction coefficient (μ) was lower for materials B, C and D as compared to material A.
X