Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Method for Engine Low Power Detection in Trucks

1997-11-17
973181
A new method for detecting the low power conditions on electronically-controlled diesel engines used in on-road vehicles has been developed. The advantage of this method is that it uses readily available diagnostic tools and engine installed sensors with no necessity for a dynamometer test. Without removing the engine, it gives an estimate of the real engine power which is accurate to 5%.
Technical Paper

The Cummins Signature 600 Heavy-Duty Diesel Engine

1998-02-23
981035
Design and development of the Cummins Signature 600, a new high horsepower dual overhead cam truck diesel engine, has been completed. The Signature 600 product system includes an all-new engine, controls, fuel system, and business information systems. During product definition, particular emphasis was placed on target markets, customer input to design, engineering and manufacturing processes, concurrent engineering and extensive mechanical and thermal analyses. Cummins Signature 600 fulfills the needs of Owner-Operator and Premium Fleet linehaul trucking businesses.
Technical Paper

Testing Procedures for Introduction of Silicon Carbide and Carbon Water Pump Seal Faces into Heavy Duty Diesel Service

1993-03-01
930585
Testing procedures to evaluate new coolant pump seal face materials and new coolant pump seal designs were evaluated. Rig testing of materials and seals followed by engine dynamometer testing enabled changes in the seal materials or design to be validated prior to field testing and limited production. These procedures were used to test and implement a coolant pump seal face material change to silicon carbide versus carbon. The change resulted in higher reliability for the coolant pump seal and reduced warranty cost for the engine.
Technical Paper

Experimental and Analytical Studies of Cylinder Head Cooling

1993-04-01
931122
Previous work on the cooling jackets of the Cummins L10 engine revealed flow separation, and low coolant velocities in several critical regions of the cylinder head. The current study involved the use of detailed cooling jacket temperature measurements, and finite element heat transfer analysis to attempt the identification of regions of pure convection, nucleate boiling, and film boiling. Although difficult to detect with certainty, both the measurements and analysis pointed strongly to the presence of nucleate boiling in several regions. Little or no evidence of film boiling was seen, even under very high operating loads. It was thus concluded that the regions of seemingly inadequate coolant flow remained quite effective in controlling cylinder head temperatures. The Cummins L10 upon which this study has focused is an in-line six cylinder, four-stroke direct injection diesel engine, with a displacement of 10 liters.
Technical Paper

The Piston Ring Shape and Its Effects on Engine Performance

1996-02-01
960052
The paper presents the latest research results on the piston ring free shape. A new free shape measurement method with optical gauging was developed. Three numerical models to compute the contact force distribution of piston ring were developed using finite element analysis (FEA). These numerical methods have been compared each other, and validated with the experimental results of ring deformation in a ring gage. The contact force distribution of a piston ring at working condition was also studied. It consists of the ring thermal boundary conditions (RTBC) validation, 3-D FEA thermal analysis and thermal contact force computation based on validated wire-cable element model. The RTBC for heavy duty diesel engine has been validated for the first time using a CUMMINS L10 engine test. Three different free shapes have been tested. The wear band measurements of tested rings all show tremendous improvements over the standard top ring.
Technical Paper

New Piston Telemetry Applied to Spherical Joint Piston Development

1996-02-01
960056
A new telemetry system has been developed for temperature or strain measurements on a spherical joint piston. The system includes a piston mounted signal multiplexer and transmitter. A patented, piston mounted power generator operates in conjunction witii a modified cylinder liner. The telemetry system is robust, having high inertia load capability and high environmental temperature operating capability. The telemetry system was installed and operated on an engine motoring test rig. Temperature signals were transmitted at engine speeds from 400 rpm to 2100 rpm. Over 100 hours of high engine speed testing with oil sump temperatures up to 122°C were completed.
Technical Paper

Experimental Results on the Effect of Piston Surface Roughness and Porosity on Diesel Engine Combustion

1996-02-01
960036
Measurements have been made to determine the effect of piston crown surface properties on combustion. Back-to-back engine tests were conducted to compare surface modified pistons to a production piston. Each modified piston was found to prolong combustion duration. Porous coatings and a non porous, roughened piston were observed to increase fuel consumption. Increase in fuel consumption was determined to be the result of increased heat release duration. The data show surface roughness alone affects the duration of heat release. The shift in magnitude of the centroid of heat release was similar to the shift observed in insulated engine experiments.
Technical Paper

Experimental Measurements on the Effect of Insulated Pistons on Engine Performance and Heat Transfer

1996-02-01
960317
Data have been gathered to compare the performance of steel crown pistons coated with yttria stabilized zirconia or mullite to an uncoated piston. The effect of coated pistons on in-cylinder heat transfer was determined from curves of ISFC versus centroid of heat release. Error analysis of the measurements showed uncertainty of ± 3% in ISFC and ± 2 crank angle degrees in the centroid of heat release could be expected for the data. Particulate emissions increased at advanced injection timings with the mullite coated piston while the zirconia coated piston showed an increase in particulate and NOx at advanced timings.
Technical Paper

Cavitation Intensity Measurements for Internal Combustion Engines

1996-02-01
960884
Recent engine design trends towards increasing power, reducing weight, advancing of injection timing and increasing of injection rate and pressure could result in increased incidence of liner pitting. Liner pitting due to coolant cavitation is a complex function of many engine design parameters and operating conditions as described in reference [1]*. Traditionally, liner cavitation problems were not detected early in the development cycle. Traditional liner vibration and coolant pressure measurements in conjunction with a numerous amount of expensive engine endurance tests were then needed to resolve cavitation problems. A method newly developed by the author and described in reference [2] for cavitation intensity measurements was successfully utilized to map out engine operating condition and develop limit curves. This method could also be applied in a non intrusive fashion.
Technical Paper

Real Time Captivation Detection Method

1996-02-01
960878
Cavitation corrosion is a very complex phenomenon that is governed by a formidable amount of factors and parameters. The phenomenon is a multi-disciplinary one which involves several aspects of physical sciences and engineering. This process is a slow progressive phenomenon with its detrimental effects being felt after severe damage has already occurred. A real time detection method for the severity of fluid cavitation and bubble collapse is described. The results are correlated to dynamic instantaneous pressure fluctuation measurements. The method is fast, reliable, and less restrictive of the sensing location. It has been tested and verified through a specially designed cavitation test rig and instrumentation setup. The method can be used for cavitation studies on ultrasonic bench rig tests and for cavitation measurements on running engines. The method was used to shed some light on characteristic cavitation differences between water and glycol which is used in engine coolants.
Technical Paper

A Powertrain Simulation for Engine Control System Development

1996-10-01
962171
A dynamic simulation of a school bus powertrain has been constructed for the purpose of assisting in the development of engine control strategies. With some extensions, this model can also be used as a first approximation to support the development of transmission shift control strategies, predict vehicle performance and drivability as well as estimate transient loads on the powertrain components. The simulation was constructed using the Matlab* computing environment along with the Simulink* toolbox, a package for the graphical development of dynamic simulation models. The vehicle model was validated against test data measured in the target vehicle powered by a natural gas engine to ensure that the simulation model yielded sensible predictions of the dynamic powertrain behavior. Equipped with a validated model, the control engineer can now use the simulation tool to assist in algorithm development. Sample applications are illustrated.
Technical Paper

Comparison of Measured and Theoretical Inter-Ring Gas Pressure on a Diesel Engine

1996-10-01
961909
Inter-ring gas pressure and piston ring motion are considered important for the control of oil consumption, particulate emissions, and reduced friction. For this reason, inter-ring gas pressure was measured on a diesel engine. Two different ring pack configurations were tested (positive and negative twist second rings). A significant difference in measured inter-ring pressure was observed. The measurements were compared to the predictions of a cylinder kit model with favorable results. Predictions showed that the observed difference between measured inter-ring pressures is caused by a significant difference in ring motion. The reasons for these differences are explained in this paper.
Technical Paper

Effect of Fuel Composition and Altitude on Regulated Emissions from a Lean-Burn, Closed Loop Controlled Natural Gas Engine

1997-05-01
971707
Natural gas presents several challenges to engine manufacturers for use as a heavy-duty, lean burn engine fuel. This is because natural gas can vary in composition and the variation is large enough to produce significant changes in the stoichiometry of the fuel and its octane number. Similarly, operation at high altitude can present challenges. The most significant effect of altitude is lower barometric pressure, typically 630 mm Hg at 1600 m compared to a sea level value of 760 mm. This can lower turbocharger boost at low speeds leading to mixtures richer than desired. The purpose of this test program was to determine the effect of natural gas composition and altitude on regulated emissions and performance of a Cummins B5.9G engine. The engine is a lean-burn, closed loop control, spark ignited, dedicated natural gas engine. For fuel composition testing the engine was operating at approximately 1600 m (5,280 ft) above sea level.
Technical Paper

Effects of Injection Timing and Exhaust Gas Recirculation on Emissions from a D.I. Diesel Engine

1981-10-01
811234
Some results of a systematic study on the effects of injection timing retard and exhaust gas recirculation on emissions from a D.I. diesel engine are presented. The factors investigated include engine speed, fuel rate, injection timing, injection pressure, intake charge oxygen concentration, and type of diluent. The detailed mechanisms governing the formation and control of nitric oxide are studied analytically, using a previously developed diesel combustion model based on transient fuel-air mixing and Zeldovich nitric oxide reaction mechanisms. The results show that exhaust gas recirculation and injection timing retard are both effective in reducing nitric oxide emissions at the expense of increasing smoke. The reduction of nitric oxide with exhaust gas recirculation and injection timing retard is mainly related to the decrease of local temperature and local atomic oxygen concentration.
Technical Paper

Vechicle Testing of Cummins Turbocompound Diesel Engine

1981-02-01
810073
Two turbocompound diesel engines were assembled and dynamometer tested in preparation for vehicle tests. Both engines met the 1980 California gaseous emission requirement and achieved a minimum BSFC of .313 lb/bhp-hr and a BSFC at rated conditions of .323 lb/bhp-hr. These engines were then installed in Class VIII heavy-duty vehicles to determine the fuel consumption and performance characteristics. Fuel consumption testing showed a 14.8% improvement for the turbocompound engine in comparison to a production NTC-400 used as a baseline. The turbocompound engine also achieved lower noise levels, improved drive-ability, improved gradeability, and moderately increased engine retardation. The second turbocompound engine was placed in commercial service and accumulated 50,000 miles on a cross-country route without malfunction. Tank mileage revealed a 15.92% improvement over a production NTCC-400 which was operating on the same route.
Technical Paper

A Preliminary Model for the Formation of Nitric Oxide in Direct Injection Diesel Engines and Its Application in Parametric Studies

1973-02-01
730083
A semiempirical, mathematical model describing the formation of nitric oxide in direct-injection diesel engines is derived. The model is used in conjunction with injection and thermodynamic cycle simulation programs. This approach enables prediction of nitric oxide emissions from design dimensions and operating parameters only, without the use of experimental data. Predicted results are compared with experiments for typical naturally aspirated and turbocharged engines. The accuracy of prediction is very good except under light-load naturally aspirated conditions. The model is used in an extensive parametric study, together with experimental verification. The agreement between prediction and experiments is excellent, except under conditions of excessive smoke or of high swirl.
Technical Paper

Design Factors That Affect Diesel Emissions

1971-02-01
710484
Although diesels, as a group, are a relatively small source of air pollutants, emissions standards which limit emissions from diesels have been adopted by California and the federal government. Test procedures and instrumentation for measuring diesel emissions have been developed, and an understanding of how engine design parameters affect emissions is evolving. Smoke and carbon monoxide are primarily functions of fuel-air ratio. Smoke is also affected by injection timing, air motion, and fuel spray characteristics. Hydrocarbon emissions are most affected by details of injector design and matching of the spray geometry with the combustion chamber shape. Nitric oxide emissions are controlled by local oxygen availability in regions of high temperature and residence time at the high temperature.
Technical Paper

Design Aspects of Low-Noise Diesel Engines

1973-02-01
730246
Methods of reducing the noise level of a diesel engine include the suppression of the major modes of block vibration and treatment of the external surfaces. Design methods enable the frequencies and noise levels of these modes to be calculated for a conventionally designed engine. The important modes of vibration, the noise signature and the effect of block modifications of a standard production V-8 engine were found by experiments. These provided the basis for the design of an experimental low-noise engine. Design features include a suffer block, removal of the bottom part of the crankcase skirt, the addition of a single bearing beam, and the use of isolated panels and damped surfaces. The noise reduction obtained was 9 dBA. Most of this is due to the use of isolated and damped nonload carrying surfaces.
Technical Paper

Diesel Engine Noise Reduction Hardware for Vehicle Noise Control

1973-02-01
730681
A range of noise reduction hardware is described for three production engine models, as well as the rationale for selecting noise reduction methods. Noise reductions up to 6 dB(A) were achieved with this hardware in the test cell. In many cases the modifications are more effective in vehicles. The success of the hardware in reducing overall vehicle noise is illustrated.
Technical Paper

Techniques of Structural Vibration Analysis Applied to Diesel Engine Noise Reduction

1975-02-01
750835
This paper presents several techniques used to define quantitatively the problem of excessive noise through engine structural vibration. These techniques include both operating engine tests and bench tests. In addition, analytical techniques are shown which give a better understanding of how the critical components within the engine cause this vibration. Through the use of analytical and experimental techniques, examples illustrate practical solutions for diesel engine noise reduction.
X