Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Microstructure and Mechanical Properties of Welded Thermoplastics

2004-03-08
2004-01-0732
Thermoplastics have been used increasingly for automobile components for both interior and under-the-hood applications. The plastic parts are made through various molding process such as compression molding, injection molding and blow molding. For parts with large or complicated geometry, small portions of the part may have to be molded first, then joined together using a welding process. The welded regions usually exhibit inhomogeneous and inferior mechanical performance compared to the bulk regions due to the differences in thermal history. The microstructures and mechanical properties of welded thermoplastics have been examined using hot-plate welded polyethylene. The specimens are prepared at various thermal conditions to simulate the real welding process. The thermal properties in welds are monitored using DSC (Differential Scanning Calorimetry) and the crystallinities are calculated.
Technical Paper

Rapid Prototyping Shortens Hydraulic Component Development Time

1995-09-01
952109
A few years ago hydraulic fluid power component manufacturers had the luxury of long lead times to develop new products. In today's competitive global market, pump and valve design engineers must be able to shorten development lead times and get new, less costly products to production in order to satisfy customer demands. This paper describes how one fluid power component manufacturer uses rapid prototyping technology to speed up the development cycle by making: fit and form models, design evaluation test samples, and tooling for prototype castings.
Technical Paper

An Overview of Microalloyed Steels, Part I: Metallurgical Aspects

1996-02-01
960308
Microalloyed (MA) steels have been developed as one of the most significant metallurgical advances over the last thirty years, with their property improvement and cost effectiveness characteristics. Even though the underlying principles for microstructural property control of these steels have been well established, applications of these steels are still limited in scale mainly due to a lack of their understanding. This review paper focuses on mechanical property control of these steels. Since the properties depend mainly on the composition and microstructure which in turn are controlled by steel making and processing, metallurgical variables are reviewed in this first part of the review. These include their strengthening mechanisms, effects of composition and processing on their behavior, and the various MA steel microstructures.
Technical Paper

An Overview of Microalloyed Steels, Part II: Their Mechanical Behavior

1996-02-01
960309
Microalloyed (MA) steels have been developed as economical alternatives to the traditional quenched and tempered (QT) steels. The physical metallurgy principles underlying their basic composition-processing-microstructure-property interrelationships have been reviewed in the first part of the review. In this second part of the review, mechanical properties as well as fabrication properties, such as mahinability, weldability, and formability, are discussed. Flat products (such as strips, sheets, and plates), long products (including bars, rods, sections/profiles), and forging articles made of MA steels are investigated. Since most engineering components made of these steels are subjected to cyclic loading, fatigue and fracture performance of MA steels and their comparison with the QT steels are also evaluated in this review.
X