Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Application Guideline to Define Catalyst Layout for Maximum Catalytic Efficiency

2001-03-05
2001-01-0929
The influence of physical parameters of the catalyst's substrate such as thermal mass, hydraulic diameter and geometric surface area on catalyst's efficiency is well known as published in numerous works. This paper will show interactions of these parameters and will provide a guideline on how to design the optimum system for a specific application, taking into account system's back pressure and system costs. Based on engine test bench results that show the influence of the physical parameters, the results for the optimized design regarding emission tests and maximum conversion rate at higher loads will be demonstrated.
Technical Paper

Application of New Diesel Aftertreatment Strategies on a Production 1.9 L Common-Rail Turbocharged Engine

2002-03-04
2002-01-1313
1 An experimental study has been carried out on a production vehicle by means of roller-bench emission tests in order to optimize alternative aftertreatment systems. To this aim different comparisons between the production exhaust system and new strategies are discussed in the present paper with aid of both modal emission data and bag tailpipe figures. The present work shows the application of a alternative solution that complies with future emission legislation with regard both to HC, CO, NOx and PM without any major engine power output or fuel consumption penalty.
Technical Paper

Advanced Performance of Metallic Converter Systems Demonstrated on a Production V8 Engine

2002-03-04
2002-01-0347
It has been shown within the catalyst industry that the emission performance with higher cell density technology and therefore with higher specific geometric area is improved. The focus of this study was to compare the overall performance of high cell density catalysts, up to 1600cpsi, using a MY 2001 production vehicle with a 4.7ltr.V8 engine. The substrates were configured to be on the edge of the design capability. The goal was to develop cost optimized systems with similar emission and back pressure performance, which meet physical and production requirements. This paper will present the results of a preliminary computer simulation study and the final emission testing of a production vehicle. For the pre-evaluation a numerical simulation model was used to compare the light-off performance of different substrate designs in the cold start portion of the FTP test cycle.
Technical Paper

Innovative Metallic Substrate Technology to Meet Future Emission Limits

2007-10-30
2007-32-0054
Exhaust after-treatment systems will have to become increasingly efficient in order to comply with the strict emission limits that will apply in the European Union and worldwide in future. Moreover, space constraints, weight and low pressure drop are just some of the issues that have to be addressed by an EU III-compliant catalytic system. The development of metallic substrates over the past few years has shown that turbulent-like substrates increase specific catalytic efficiency. This has made it possible to enhance overall performance for a specific catalytic volume or reduce the volume while keeping catalytic efficiency constant. This paper focuses on the emission efficiency of standard, TS and PE metallic substrates. A simulation tool and flow bench measurements were used to develop a test matrix with catalyst similar pressure drop in order to examine different cell densities, substrate lengths and coating technologies.
X