Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Root-Cause Analysis, and Improvement of a Port Fuel Injected V6 Vehicle to Achieve Best-In-Class Sound Quality

2021-08-31
2021-01-1041
This paper will communicate an in-depth investigation uncovering contributing factors defining the desired and undesired acoustic signature of a V6 Vehicle. A transfer path analysis tool is exercised to rank improvement opportunities. These results are used to drive design improvements with the goal of achieving best-in-class sound quality when executed as a system. A cohesive powertrain-vehicle-level acoustic improvement package is executed, improving air induction, intake manifold, both structure and air-core, exhaust-radiated and under-hood-acoustic encapsulation. The acoustic package was validated by jury testing to provide significant refinement enhancement improving predicted 3rd party scores.
Technical Paper

Utilizing Engine Dyno Data to Build NVH Simulation Models for Early Rapid Prototyping

2021-08-31
2021-01-1069
As the move to decrease physical prototyping increases the need to virtually prototype vehicles become more critical. Assessing NVH vehicle targets and making critical component level decisions is becoming a larger part of the NVH engineer’s job. To make decisions earlier in the process when prototypes are not available companies need to leverage more both their historical and simulation results. Today this is possible by utilizing a hybrid modelling approach in an NVH Simulator using measured on road, CAE, and test bench data. By starting with measured on road data from a previous generation or comparable vehicle, engineers can build virtual prototypes by using a hybrid modeling approach incorporating CAE and/or test bench data to create the desired NVH characteristics. This enables the creation of a virtual drivable model to assess subjectively the vehicles acoustic targets virtually before a prototype vehicle is available.
Technical Paper

Target Setting Process for Hybrid Electric Drives Using TPA, Jury Study, and Torque Management

2019-06-05
2019-01-1453
The idea of improved efficiency without compromising the “fun to drive” aspect has renewed the auto industry’s interest toward electrification and hybridization. Electric drives gain from having multiple gear ratios which can use advantageous operating set points thus increasing range. Furthermore, they benefit significantly from frequent decelerations and stopping as is experienced in city driving conditions. To recuperate as much energy as possible, deceleration is done at high torque. This presents an interesting but serious sound quality issue in the form of highly tonal whine harmonics of rapidly changing gears that do not track with vehicle speed thus being objectionable to the vehicle occupants. This paper presents an NVH target setting process for a hybrid electric transmission being integrated into two existing vehicles, one belonging to the premium segment and another aimed at enthusiasts with off-road applications.
X