Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Technical Paper

Architecture & Design of Common Hybrid Torque Controls within a Powertrain Domain Controller

2023-04-11
2023-01-0549
The proliferation and increased complexity of electrified powertrains presents a challenge to the associated controls development. This paper outlines the strategy of common supervisory and domain torque management for such powertrains. The strategy covers the multitude of powertrain architectures that exist in the market today while maintaining the fundamental pillars of physics-based torque controls, state-of-the-art optimization methodologies, and common-core hybrid system constraints. The electrified powertrain torque controls that Stellantis LLC. uses include key constituents such as optimization of powertrain state that relate to optimum engine speed and transmission gear, optimization of engine and motor torques, engine start-stop management, and hybrid shift execution which manages powertrain state transitions by interacting with various external transmission systems. The common backbone of these constituents are the dynamic/kinematic equations of the powertrain.
Journal Article

Accelerated Sizing of a Power Split Electrified Powertrain

2020-04-14
2020-01-0843
Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin’s minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude.
X