Refine Your Search

Topic

Author

Search Results

Journal Article

Turbocharger Turbine Inlet Isentropic Pressure Observer Model

2015-04-14
2015-01-1617
Exhaust pressures (P3) are hard parameters to measure and can be readily estimated, the cost of the sensors and the temperature in the exhaust system makes the implementation of an exhaust pressure sensor in a vehicle control system a costly endeavor. The contention with measured P3 is the accuracy required for proper engine and vehicle control can sometimes exceed the accuracy specification of market available sensors and existing models. A turbine inlet exhaust pressure observer model based on isentropic expansion and heat transfer across a turbocharger turbine was developed and investigated in this paper. The model uses 4 main components; an open loop P3 orifice flow model, a model of isentropic expansion across the turbine, a turbine and pipe heat transfer models and an integrator with the deviation in the downstream turbine outlet parameter.
Technical Paper

Service Bay Diagnostic System

1986-10-20
861030
The Service Bay Diagnostic System (SBDS) will be designed to assist the dealership technician in diagnosing and repairing Ford Motor vehicles. The system hardware will be configured around a Service Bay Computer with mass storage capability and auxiliary service equipment. Major system features include: guided service writer/customer interaction, interactive vehicle diagnostics, information management. capabilities, and an additional aid to identifying intermittent failures through the use of a portable over-the-road data acquisition device. In order to assist the technician in properly diagnosing the causal factor, the Service Bay Computer System will also be enhanced through the use of an expert system knowledge base.
Technical Paper

Control Challenges and Methodologies in Fuel Cell Vehicle Development

1998-10-19
98C054
In recent years, rapid and significant advances in fuel cell technology, together with advances in power electronics and control methodology, has enabled the development of high performance fuel cell powered electric vehicles. A key advance is that the low temperature (80°C) proton-exchange-membrane (PEM) fuel cell has become mature and robust enough to be used for automotive applications. Apart from the apparent advantage of lower vehicle emission, the overall fuel cell vehicle static and dynamic performance and power and energy efficiency are critically dependent on the intelligent design of the control systems and control methodologies. These include the control of: fuel cell heat and water management, fuel (hydrogen) and air (oxygen) supply and distribution, electric drive, main and auxiliary power management, and overall powertrain and vehicle systems.
Technical Paper

Control of Electric to Parallel Hybrid Drive Transition in a Dual-Drive Hybrid Powertrain

2010-04-12
2010-01-0819
Hybrid electric vehicle (HEV) powertrains have become key to developing environmentally friendly and fuel efficient vehicles. As such, companies are continually investing in developing new hybrid powertrain architectures. Ford Motor Company has developed a new “Dual-Drive” full hybrid electric vehicle that overcomes some attribute deficiencies of existing hybrid powertrain architectures due to the kinematic arrangement of the engine, motors and driveline components. This hybrid powertrain is comprised of conventional powertrain components as its base with an electric motor on the rear axle, and a crank integrated starter generator, engine and transmission on the front axle. It forms a complex configuration which provides fuel economy improvement over a conventional powertrain.
Technical Paper

Advanced Control of Engine RPM for a More Intuitive Driving Experience in Power Split Hybrid Electric Vehicles

2010-10-25
2010-01-2194
The Auto Industry is responding to the environment and energy conservation concerns by ramping up production of hybrid electric vehicles (HEV). As the initial hurdles of making the powertrain operate are overcome, challenges such as making the powertrain feel more refined and intuitive remain. This paper investigates one of the key parameters for delivering that refinement: engine RPM behavior. Ideal RPM behavior is explored and included in the design of a control system. System implications are examined with regard to the effect of engine RPM scheduling on Battery usage and vehicle responsiveness.
Technical Paper

Front suspension LCA bushing optimization

2010-10-06
2010-36-0248
When considering ride comfort and precision there are lots of components in the vehicle suspensions that have influence in this behavior and some ride occurrences (mainly higher frequencies) are rubber bushing responsibility but due their compliance, other vehicle attributes, steering and handling, can be affected. So the correct components tuning can maintain or improve vehicle attributes to address desired brand DNA and vehicle its specific needs. These studies were done considering the elastokinematics of front axle only due need of improve its comfort concerning higher frequencies (impacts and harshness). In addiction, correlation between subjective evaluation and objective data acquisition/post processing is desirable to optimize development time. Based in subjective directional, the activities time was reduced and final configuration reached faster.
Technical Paper

Internal combustion engine calibration teaching by Stand Alone System.

2010-10-06
2010-36-0346
Internal combustion engine calibration teaching by Stand Alone System. This paper illustrates a teaching methodology for technical students of internal combustion engine calibration, by stand alone engine control unit with variable ignition and fuel injection time. Using a system named HIS (Stand alone Electronic Control Unit), to change the engine parameters, as fuel injection time and ignition time, the students can optimize fuel consumption, performance and exhaust emission. The tests are developed using the DOE (design of experiments) technique of artificial intelligence.
Technical Paper

Modeling & Code Generation for Powertrain Control Monitoring

2010-04-12
2010-01-0206
With the introduction of new technologies ranging from developing new alternative energy vehicles to passive and active safety systems, the automakers are responding to the increased complexity of the control system by embracing Model Based Design (MBD) and Auto-code Generation (ACG) tools for control system design. This translates into lower development costs, higher quality and faster time-to-market. The Ford Motor Company production hybrid group launched a pilot project to study the feasibility of using MBD to speed up the development and testing of the next generation Torque Monitor software. This software uses a custom data storage format, called Double Store Variable (DSV) format, for all the critical signals. Each variable contains two fields, one for storing the actual data and the second for storing a transformed copy (e.g. one's complement) of the data. This allows the software to detect run-time corruption of the data in real-time.
Technical Paper

Adaptive Fuzzy Neural Networks With Global Clustering

2004-03-08
2004-01-0294
This paper proposes a novel algorithm. This algorithm is called Self-Organizing Fuzzy Neural Network (SOFNN). SOFNN revolutionizes how researchers apply control theories, image/signal processing on control systems and other applications. In general, SOFNN is an identification technique that automatically initiates, builds and fine-tunes the required network parameters. SOFNN evaluates required structures without predefined parameters or expressions regarding systems. SOFNN sets out to learn and configure a system's characteristics. Self-constructing and self-tuning features enable SOFNN to handle complex, non-linear, and time-varying systems with higher accuracy, making systems identification easier. SOFNN constructs and fine-tunes the system parameter through two phases. The two phases are the construction and the parameter-tuning phase. The two phases run concurrently allowing SOFNN to identify systems on-line.
Technical Paper

A Dyno Data Acquisition System for Lean NOx Trap Investigations

2001-03-05
2001-01-0208
A flexible, easily configuration data acquisition system was designed and built for detailed studies of the steady state and dynamic properties of lean NOx traps for an engine dynamometer environment. The system is based on the industry standard VXI backplane. The overriding design philosophy was to design and develop a data acquisition system that was user friendly and could be operated easily by engine laboratory technicians, as well as by test engineers. The primary requirements guiding the design were the following: (1) the ability easily to configure, save, recall, modify, and print test configurations. (2) The ability to configure the gain, channel name, and engineering units for each analog channel. (3) The ability to trigger from one analog input channel. (4) A provision for numeric auto-incrementing of data file names. (5) The ability to save data in Excel™ compatible ASCII format. (6) The utilization of off-the shelf VXI hardware.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Technical Paper

Characterisation of DISI Emissions and Fuel Economy in Homogeneous and Stratified Charge Modes of Operation

2001-09-24
2001-01-3671
An experimental study of the performance of a reverse tumble, DISI engine is reported. Specific fuel consumption and engine-out emissions have been investigated for both homogeneous and stratified modes of fuel injection. Trends in performance with varying AFR, EGR, spark and injection timings have been explored. It is shown that neural networks can be trained to describe these trends accurately for even the most complex case of stratified charge operation with exhaust gas recirculation.
Technical Paper

The New 1.0l Supercharger Zetec RoCam Engine

2002-11-19
2002-01-3438
The current Brazilian tax legislation promotes vehicles, powered by engines with up to 1.0l displacement. In order to offer the customer an engine with the maximum tax advantage, a supercharged derivative of the Ford 1.0l Zetec RoCam engine was developed. The market specific boundary conditions in South America require powertrains with immediate response especially at low engine speeds. This can be achieved by a supercharged engine concept. The paper discusses the required engine modifications for the supercharger application. The combustion system was changed to benefit from the higher volumetric efficiency, including the optimisation of the intake, exhaust and bypass control system. Extensive modifications of the base engine were required to adapt the engine to the higher thermal load and the specific boundary condition of a supercharger application.
Technical Paper

Understanding the Interaction Between Passive Four Wheel Drive and Stability Control Systems

2002-03-04
2002-01-1047
The purpose of this paper is to describe and define the interaction between a brake based stability control system and a passive coupler (viscous coupling unit) inside the transfer case of a Four-Wheel Drive (4WD) vehicle. This paper will focus on the driveline system and the impact that a stability control system can have on it. It will provide understanding of torque transfer on 4WD vehicles that are equipped with a brake based stability control system and use this knowledge to recommend ways to reduce the undesirable torque transfer interaction between the two systems. These recommendations can be readily applied to future 4WD/AWD vehicles to improve compatibility between the two systems.
Technical Paper

An Advanced Instrument for the Real Time Measurement of Engine Oil Economy

1992-02-01
920655
A number of advancements have been made in the coulometric sulfur trace instrumental technique for the real-time measurement of engine oil economy. These advancements include modification of the coulometric cell to improve reliability and reproducibility. The instrument has been interfaced with a microcomputer for instrument control as well as data acquisition, storage, and analysis. Studies were undertaken which demonstrate sufficient sensitivity and linearity for determination of engine oil economy at levels better than 10,000 miles/quart. Applications to steady-state engine oil consumption mapping and to instantaneous oil consumption during transient engine cycling are described. These instruments are being produced by an outside supplier for use in various company locations in both the engine production and engine research environments.
Technical Paper

Effect of Mileage Accumulation on Particulate Emissions from Vehicles Using Gasoline with Methylcyclopentadienyl Manganese Tricarbonyl

1992-02-01
920731
Particulate and manganese mass emissions have been measured as a function of mileage for four Escort and four Explorer vehicles using 1) MMT (Methylcyclopentadienyl Manganese Tricarbonyl) added to the gasoline at 1/32 g Mn/gal and 2) gasoline without MMT. The MMT was used in half of the fleet starting at 5,000 miles. The vehicles were driven on public roads at an average speed of 54 mph to accumulate mileage. This report describes the particulate and manganese emissions, plus emissions of four air toxics at 5,000, 20,000, 55,000, 85,000 and 105,000 miles. Four non-regulated emissions were measured and their average values for vehicles without MMT were 0.6 mg/mi for formaldehyde, 0.7 mg/mi for 1,3-butadiene, 9 mg/mi for benzene and 12 mg/mi for toluene. Corresponding values for MMT-fueled vehicles were between 1.5 and 2.4 times higher.
Technical Paper

Evolution of Automotive Test Equipment in the Service Bay

2011-04-12
2011-01-0750
Most people still remember the introduction of the IBM PC in 1981 and the first Microsoft Windows operating system in 1985. These were the pioneering technologies that started a revolution in automotive test equipment in the service bay. What was once a purely mechanical garage environment where information was published annually in large paper manuals has evolved into a highly technical computing environment. Today vehicle networks link onboard vehicle control systems with diagnostic systems and updated service information is published daily over the Internet. A lot has changed over the last twenty years, and manufacturers of diagnostic test equipment are learning to deal with the constantly evolving computing platforms and host operating systems. This paper traces the history of automotive diagnostic equipment at Ford Motor Company and shares some of the hard lessons learned from the early systems.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

A New Mechanism for Measuring Exhaust A/F

1993-11-01
932957
Exhaust gas air-fuel ratio (A/F) sensors are common devices in powertrain feedback control systems aimed at minimizing emissions. Both resistive (using TiO2) and electrochemical (using ZrO2) mechanisms are used in the high temperature ceramic devices now being employed. In this work a new mechanism for making the measurement is presented based on the change in the workfunction of a Pt film in interaction with the exhaust gas. In particular it is found that the workfunction of Pt increases reversibly by approximately 0.7 V at that point (the stoichiometric ratio) where the exhaust changes from rich to lean conditions. This increase arises from the adsorption of O2 on the Pt surface. On returning to rich conditions, catalytic reaction of the adsorbed oxygen with reducing species returns the workfunction to its original value. Two methods, one capacitive and one thermionic, for electrically sensing this workfunction change and thus providing for a practical device are discussed.
Technical Paper

Diesel Particulate Control System for Ford 1.8L Sierra Turbo-Diesel to Meet 1997-2003 Particulate Standards

1994-03-01
940458
Feasibility of wall-flow diesel exhaust filter trap particulate aftertreatment emission control systems to meet the U.S. Federal, CARB, and EC passenger car standards for 1997/2003 and beyond for the 1360 kg (3000 lb.) EAO (Ford European Automotive Operations) 1.8 liter Sierra Turbo-Diesel passenger car is investigated. Plain and Pd catalyzed monolith wall flow diesel particulate traps are examined using Phillips No. 2 diesel fuel (Reference Standard), low sulfur (0.05% S) diesel fuel and an ultra-low sulfur (0.001% S) diesel fuel. Comparisons are made with baseline FTP75 and Highway exhaust emissions and Federal and CARB mandated particulate standards for 1997 and 2003. Effectiveness of catalyzed traps, plain traps, copper octoate trap regeneration fuel additive, and fuel sulfur content on the particulate emissions is determined.
X