Refine Your Search

Topic

Author

Search Results

Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Journal Article

Modeling of Residual Stresses in Quenched Cast Aluminum Components

2011-04-12
2011-01-0539
Cast aluminum alloys are normally quenched after solution treatment or solidification process to improve aging responses. Rapid quenching can lead to high residual stress and severe distortion which significantly affects dimension stability, functionality and particularly performance of the product. To simulate residual stress and distortion induced during quenching, a finite element based approach was developed by coupling an iterative zone-based transient heat transfer algorithm with material thermo-viscoplastic constitutive model. With the integrated models, the numeric predictions of residual stresses and distortion in the quenched aluminum castings are in a good agreement with experimental measurements.
Journal Article

Iterative Learning Control for a Fully Flexible Valve Actuation in a Test Cell

2012-04-16
2012-01-0162
An iterative learning control (ILC) algorithm has been developed for a test cell electro-hydraulic, fully flexible valve actuation system to track valve lift profile under steady-state and transient operation. A dynamic model of the plant was obtained from experimental data to design and verify the ILC algorithm. The ILC is implemented in a prototype controller. The learned control input for two different lift profiles can be used for engine transient tests. Simulation and bench test are conducted to verify the effectiveness and robustness of this approach. The simple structure of the ILC in implementation and low cost in computation are other crucial factors to recommend the ILC. It does not totally depend on the system model during the design procedure. Therefore, it has relatively higher robustness to perturbation and modeling errors than other control methods for repetitive tasks.
Journal Article

Optimal Sensor Configuration and Fault-Tolerant Estimation of Vehicle States

2013-04-08
2013-01-0175
This paper discusses observability of the vehicle states using different sensor configurations as well as fault-tolerant estimation of these states. The optimality of the sensor configurations is assessed through different observability measures and by using a 3-DOF linear vehicle model that incorporates yaw, roll and lateral motions of the vehicle. The most optimal sensor configuration is adopted and an observer is designed to estimate the states of the vehicle handling dynamics. Robustness of the observer against sensor failure is investigated. A fault-tolerant adaptive estimation algorithm is developed to mitigate any possible faults arising from the sensor failures. Effectiveness of the proposed fault-tolerant estimation scheme is demonstrated through numerical analysis and CarSim simulation.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Technical Paper

Balance of Electrical Power Requirements through Smart Electric Power Management

2011-04-12
2011-01-0042
This paper examines Smart Electric Power Management as it pertains to when the vehicle charging system is active. Over the past decade there have been several factors at play which have stressed the demands placed upon the vehicle electrical power system. Many of these factors present challenges to electrical power that are at cross-purposes with one another. For example, demands of new and existing electrical loads, customer expectations about load performance and battery life, and the push by governments' world-wide for increased fuel economy (FE) and reduced CO2 emissions all have direct impact and can be directly impacted by decisions made in electric power design. As the electrification of the vehicle has progressed we now have much more specific vehicle state data available and the means to share this information among on-board computers through serial data link connectivity.
Technical Paper

Adaptive Remote Vehicle Start Operation for Reduced Fuel Consumption

2011-04-12
2011-01-0045
Remote vehicle start systems are commonly available as an aftermarket accessory, and more recently, as a factory installed vehicle feature. These systems and their associated algorithms enable a user of the vehicle to remotely start the engine and/or other vehicle systems with the end goal of preconditioning the cabin environment, for example, if the user wishes to have the vehicle's interior heated or cooled before the user enters the vehicle. However, if the engine is remotely started for an extended period of time, the increased use of fuel, energy, and/or other resources may be greater than optimal or desired. Through the use of available vehicle sensors and enhanced algorithms, a system can be implemented which allows the passenger cabin to be heated or cooled to within a range of moderate temperatures, while reducing the resources utilized by the vehicle.
Technical Paper

GM Approach to Chassis Based Load Management

2011-04-12
2011-01-0024
Global programs are placing demands on vehicle platforms to achieve structural durability robustness across a broader spectrum of vehicle configurations and use conditions. This robustness is optimally achieved by (a) localizing energy absorption to lower cost components, and (b) narrowing the spread in loads generated during durability events, which in turn minimizes the cost and mass impact to the vehicle platform. A generalized philosophy for conducting load optimization and for improving energy management for various types of events is presented here. Various techniques that have been employed at GM are explained by way of illustration.
Technical Paper

Conducting Tire-Coupled (4-Post) Durability Simulations without Road Load Data Acquisition

2011-04-12
2011-01-0225
For decades, the industry standard for laboratory durability simulations has been based on reproducing quantified vehicle responses. That is, build a running vehicle, measure its responses over a variety of durability road surfaces and reproduce those responses in the laboratory for durability evaluation. To bring a vehicle to market quickly, the time between tightening the last bolt on a prototype test vehicle and starting the durability evaluation test must be minimized. A method to derive 4-Post simulator displacements without measuring or predicting vehicle responses is presented.
Technical Paper

Dimensional Quality Control of Repeated Molded Polymer Battery Cell Housings in Automotive Energy Systems

2011-04-12
2011-01-0244
Current manufacture of alternative energy sources for automobiles, such as fuel cells and lithium-ion batteries, uses repeating energy modules to achieve targeted balances of power and weight for varying types of vehicles. Specifically for lithium-ion batteries, tens to hundreds of identical plastic parts are assembled in a repeating fashion; this assembly of parts requires complex dimensional planning and high degrees of quality control. This paper will address the aspects of dimensional quality for repeated, injection molded thermoplastic battery components and will include the following: First, dimensional variation associated with thermoplastic components is considered. Sources of variation include the injection molding process, tooling or mold, lot-to-lot material differences, and varying types of environmental exposure. Second, mold tuning and cavity matching between molds for multi-cavity production will be analyzed.
Technical Paper

Optimization of Scratch Resistance for Molded in Color Interior Thermoplastic Olefin Injection Molded Plastics

2011-04-12
2011-01-0464
As customer dissatisfaction with interior trim components is tracked by the JDPowers question on “surface durability”, there is a need to increase the durability of the parts that are molded in color. In particular, door trim panel lowers are susceptible to surface damage which results in an unfavorable appearance. To address this issue, an assessment of the various factors that can affect surface durability was conducted using talc filled TPO materials in order to determine the optimum set of physical properties. The team used Design for Six Sigma (DFSS) methodology. A Taguchi orthogonal experiment was used and included control system factors of material, grain, gloss, and color. Noise factors included molding process parameters, aging, and piece to piece variation. The output was a measure of the scratch resistance of the molded plaque which was defined by a Delta L calculation.
Technical Paper

Lightweight MacPherson Strut Suspension Front Lower Control Arm Design Development

2011-04-12
2011-01-0562
The paper will discuss the results of a study to develop lightweight steel proof-of-concept front lower control arm (FLCA) designs that are less expensive and achieve equivalent structural performance relative to a baseline forged aluminum FLCA assembly. A current production forged aluminum OEM sedan FLCA assembly was selected as an aggressive mass target based on competitive benchmarking of vehicles of its size. CAE structural optimization methods were used to determine the initial candidate sheet steel and forged designs. Two (2) sheet steel FLCA designs and one (1) forged steel FLCA design were selected and developed to meet specified performance criteria. An iterative optimization strategy was used to minimize the mass of each design while meeting the specified stiffness, durability, extreme load, and longitudinal buckling strength requirements.
Technical Paper

Small Amplitude Torsional Steering Column Dynamics on Smooth Roads: In-Vehicle Effects and Internal Sources

2011-04-12
2011-01-0560
Internally excited torsional steering wheel vibrations at frequencies near 8-22 Hz on smooth roads can produce driver disturbances, commonly described as “SHAKE”. These vibrations are primarily excited by the rotating front suspension corners and are periodic in the rotational frequencies of the tire-wheel assemblies. The combination of vehicular dynamic amplification originating in dominant suspension and steering system vibratory modes, and a sufficiently large 1st harmonic non-uniformity excitation of the rotating corner components, can result in periodic vibrations exceeding thresholds of disturbance. Controlling the periodic non-uniformity excitation through individual component requirements (e.g., wheel imbalance, tire force variation, wheel runout, concentric piloting of wheel on hub) is difficult since the desired upper limits of individual component requirements for vibration-free performance are typically beyond industry capability.
Technical Paper

Intersection Management using Vehicular Networks

2012-04-16
2012-01-0292
Driving through intersections can be potentially dangerous because nearly 23 percent of the total automotive related fatalities and almost 1 million injury-causing crashes occur at or within intersections every year [1]. The impact of traffic intersections on trip delays also leads to waste of human and natural resources. Our goal is to increase the safety and throughput of traffic intersections using co-operative driving. In earlier work [2], we have proposed a family of vehicular network protocols, which use Dedicated Short Range Communications (DSRC) and Wireless Access in Vehicular Environment (WAVE) technologies to manage a vehicle's movement at intersections Specifically, we have provided a collision detection algorithm at intersections (CDAI) to avoid potential crashes at or near intersections and improve safety. We have shown that vehicle-to-vehicle (V2V) communications can be used to significantly decrease the trip delays introduced by traffic lights and stop signs.
Technical Paper

Vehicle Acoustic Sensitivity Performance Using Virtual Engineering

2011-04-12
2011-01-1072
In order to assess the possible ways of energy transfer from the various sources of excitation in a vehicle assembly to a given target location, frequency based substructuring technique and transfer path analysis are used. These methods help to locate the most important energy transfer paths for a specific problem, and to evaluate their individual effects on the target, thus providing valuable insight into the mechanisms responsible for the problem. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc. This paper is devoted to identify the noise transfer paths and the force transmissibility among the interfaces of different components in the vehicle for the low to mid frequency range.
Technical Paper

Hood Slam Process Automator

2011-04-12
2011-01-1066
This paper deals with the development of a Hood Slam Process Automator (PA) to automate the pre-processing tasks of the virtual slam assessment with non-linear Nastran Transient Sol. 129 on all types of hoods. The slam analysis generally consumes a lot of analyst's time for building the slam models, typically six hours and is very tedious and has the potential for errors. The Hood Slam PA will automatically create and perform slam analysis pre-processing tasks within HyperMesh software such as creating latch striker interface, creating seals and bumpers with CBUSH1D elements, assigning transient slam speed to the hood and will finally generate the Nastran non-linear transient (Sol.129) hood slam analysis input files. The ready to run analysis input files will be submitted to the Nastran solver and the analysis results will then be post processed using HyperView software.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

2011-04-12
2011-01-1173
1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Technical Paper

Optimizing Exhaust System Design To Minimize Shipping Costs

2011-04-12
2011-01-1256
The design of an existing GM exhaust system is analyzed for possible design modifications that may result in lower shipping costs between the supplier facility that manufactures the exhaust system and the assembly plant that installs the system. Investment, changes in piece cost, and other factors are examined in order to determine design changes based upon a rate of return on the investment.
Technical Paper

Transmission Algorithm Development using System Simulation (Virtual Vehicle)

2011-04-12
2011-01-1233
Due to the multitude of external design constraints, such as increasing fuel economy standards, and the increasing number of global vehicle programs, developers of automotive transmission controls have had to cope with increasing levels of system complexity while at the same time being forced by the marketplace to improve system quality, reduce development costs, and improve time to market. General Motors Powertrain (GMPT) chose to meet these challenges through General Motors Company's Road-to-Lab-to-Math (RLM) strategy, particularly the Math-based method of a virtual vehicle simulation environment called System Simulation. The use of System Simulation to develop transmission control algorithms has enabled GMPT to improve product quality and reduce development times and costs associated with the dependence on physical prototypes. Additionally, System Simulation has facilitated the reuse of GMPT controls development assets, improving overall controls development efficiency.
Technical Paper

Voltec Battery Design and Manufacturing

2011-04-12
2011-01-1360
In July 2007, GM announced that it would produce the Chevy Volt, the first high-production volume electric vehicle with extended range capability, by 2010. In January 2009, General Motors announced that the Chevrolet Volt's lithium ion Battery Pack, capable of propelling the Chevy Volt on battery-supplied electric power for up to 40 miles, would be designed and assembled in-house. The T-shaped battery, a subset of the Voltec propulsion system, comprises 288 cells, weighs 190 kg, and is capable of supplying over 16 kWh of energy. Many technical challenges presented themselves to the team, including the liquid thermal management of the battery, the fast battery pack development timeline, and validation of an unproven high-speed assembly process. This paper will first present a general overview of the approach General Motors utilized to bring the various engineering organizations together to design, develop, and manufacture the Volt battery.
X