Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Durability Design Method of New Stopper Bush Using New Theory (Friction and Spring) for Electric Power Steering

2014-04-01
2014-01-0046
In the automobile industries, weight reduction has been investigated to improve fuel efficiency together with reduction of CO2 emission. In such circumstance, it becomes necessity to make an electric power steering (EPS) more compact and lightweight. In this study, we aimed to have a smaller and lighter EPS gear size by focusing on an impact load caused at steering end. In order to increase the shock absorption energy without increase of stopper bush size, we propose new theory of impact energy absorption by not only spring function but also friction, and a new stopper bush was designed on the basis of the theory. The profile of the new stopper bush is cylinder form with wedge-shaped grooves, and when the new stopper bush is compressed by the end of rack and the gear housing at steering end, it enables to expand the external diameter and produce friction. In this study, we considered the durability in the proposed profile.
Journal Article

Consideration about Meshing of Worm Gear Based on MUB (Meshing Under Base-Circle) Theory for EPS

2014-04-01
2014-01-0058
This paper will discuss the stress reduction of the worm wheel for an electric power steering (EPS) system. The research discussed in this paper focused on the worm wheel, the EPS component that determines the maximum diameter of the system. If the stress of the worm wheel could be reduced without increasing in size, it would be possible to reduce the size of the worm wheel and EPS system. In order to reduce the stress of the worm wheel, the conventional design method has extended the line-of-action toward outside of the worm wheel to increase the contact ratio of the gears and these method lead to an increase in the outer diameter. In order to address this issue, past research proposes the basic concept to extend line-of-action toward the inside of the worm wheel. And this new meshing theory was named MUB (Meshing Under Base-circle) theory. In this paper, characteristics of meshing of the gear formed by MUB theory are determined in more detail.
Journal Article

Development of the Next-Generation Steering System (Development of the Twin Lever Steering for Production Vehicle)

2011-04-12
2011-01-0557
Looking back on steering systems in more than a hundred years that have passed since the introduction of the automobile, it can be seen that original method of controlling cars pulled by animals such as horses was by reins, and early automobiles had a single push-pull bar (tiller steering). That became the steering wheel, and an indirect steering mechanism by rotating up and down caught on. While the steering wheel is the main type of steering system in use today, the team have developed the Twin Lever Steering (TLS) system controlled mainly by bi-articular muscles, making use of advancements in science and technology and bioengineering to develop based on bioengineering considerations as shown in Fig. 1. The objective of that is to establish the ultimate steering operation system for drivers. In the first report, the authors reported on results found by using race-car prototypes as shown in Fig. 2.
Journal Article

New Three-dimensional Piston Secondary Motion Analysis Method Coupling Structure Analysis and Multi Body Dynamics Analysis

2011-11-08
2011-32-0559
A new piston secondary motion analysis has been developed that accurately predicts piston strength and the slap noise that occurs when the engine is running. For this secondary motion analysis, flexible bodies are used for the models of the piston, cylinder and cylinder head. This makes it possible to quantify the deformations and secondary motion occurring in each area of the engine. The method is a coupled analysis of the structure analysis and the multi body dynamics analysis. The accuracy of the results obtained in the new analysis method was verified by comparing them to measurement data of piston skirt stress and piston secondary motion taken during firing. To measure piston skirt stress, a newly developed battery-powered telemetric measurement system was used. The calculation results were close to the measurement results both for stress and for secondary motion from low to high engine speed.
Technical Paper

Development of High Performance Four-Cycle Motorcycle Engine Oils

2008-09-09
2008-32-0080
The environmental performance of automobiles and automobile engines in particular is the foremost issue in the automotive industry today. In addition, engine durability performance is an essential aspect of engine oil performance. Four-cycle motorcycle engine oils formulated with dialkyl phosphate, a sulfur-free additive developed as an alternative to ZDDP, provide excellent environmental and durability performance in terms of longer drain intervals, cleanliness and low corrosion properties.
Technical Paper

Verification of Influences of Biodiesel Fuel on Automotive Fuel-line Rubber and Plastic Materials

2010-04-12
2010-01-0915
At present, biodiesel fuels using natural-origin materials are expanding in share, and there are many different kinds. Biodiesel fuel generates organic acid when it deteriorates, so care is needed when evaluating the influence of the fuel on automotive fuel-line materials. A model biodiesel fuel was designed taking into account deterioration of the fuel and mixing of impurities into it. Durability of automotive fuel-line rubber and plastic materials were evaluated by using the model fuel. From the evaluation results, it was found that fluoroelastomer (hereafter referred to as FKM) and polyacetal resin (hereafter referred to as POM) deteriorate depending on specific fuel properties and deterioration state. In this paper, we report evaluating results of biodiesel fuels on the automotive fuel-line rubber and plastic materials, and the importance of biodiesel fuel property management.
Technical Paper

Control Technology of Brake-by-Wire System for Super-Sport Motorcycles

2010-04-12
2010-01-0080
Super-sport motorcycles have shorter wheelbases than other category motorcycles. Due to this, strong braking occasionally causes large pitching motions to occur, including rear-wheel-lift. In order to reduce such pitching motions and achieve an effective braking force, the authors have developed a brake-by-wire system that uses a pressure sensor to detect the braking input pressure and an electric actuator to variably control the hydraulic pressure. This system makes it possible to precisely control the braking force compared with the previous ABS. Large pitching control was performed by the distribution of a front wheel and a rear-wheel braking forces, CBS (Combined Brake System), by using electronic control, and Brake-by-Wire has been suitable for sport riding. As a result, stable braking performance could be obtained without spoiling the handling characteristics of super-sport motorcycles.
Technical Paper

Application of HIL Simulations for the Development of Vehicle Stability Assist System

2002-03-04
2002-01-0816
The Vehicle Stability Assist (VSA) system can generate sufficient forces to rapidly change the vehicle's motion. We can use this capability to effectively control the vehicle's behavior, but we must pay careful attention to ensure its reliability. The VSA system should be precisely tuned for each vehicle's characteristics in order to satisfactorily control performance without any unnecessary intervention or any excessive warnings. Usually extensive field tests are necessary to precisely tune the VSA system. This paper presents a practical method to tune the VSA system with Hardware-In-the-Loop (HIL) simulations in the final stage of its development. Due to the application of this procedure, both high control capabilities and reliability of the VSA system can be achieved.
Technical Paper

Study of Low-Viscosity Engine Oil on Fuel Economy and Engine Reliability

2011-04-12
2011-01-1247
An examination was made on the effect of low-viscosity engine oil on fuel efficiency improvements and engine reliability for the purpose of improving fuel efficiency through the use of select engine oils. Fuel efficiency-improving effects were estimated by measuring friction torque using low-viscosity engine oil. The results show that reducing engine oil viscosity is effective for improving fuel efficiency. In examining engine reliability, attention was paid to the following two aspects which are concerns in practical performance that may arise when engine oil viscosity is reduced. Engine oil consumption Sliding wear at high temperatures Tests and analyses were conducted to develop indexes for engine oil properties that are strongly correlated with each of these two concerns. A strong correlation was found between engine oil consumption and the results of a thermogravimetric analysis, and between high-temperature sliding wear and high-temperature, high-shear viscosity (HTHS).
Technical Paper

A System for the Modal Analysis of Exhaust Emissions from Motorcycles

1981-02-01
810297
Devices for use in control of exhaust emissions have become indispensable to motorcycles. In order to evaluate quantitatively the effect of each device, the modal analysis system has to be required. The Modal Analysis System is one that classifies any driving schedule which is used for emissions measurement into four modes: idle, acceleration, cruise, and deceleration; then measures the emissions continuously using a mini-computer which accumulates the results of the analysis by mode. Instead of CO2 tracer method, we introduced the method of diluted exhaust gas measurement. In order for the system to produce reliable measurements, the accuracy of the total installation must be ensured. This paper describes the improvements of accuracy of analysers, technique on handling delay time and the verifications on the modal analysis system.
Technical Paper

Performance of Antilock Brakes with Simplified Control Technique

1983-02-01
830484
The four-wheel controlling antilock brake system is considered as an effective safety device because of its capability to help a driver to maintain vehicle stability and steerability during panic braking even on a slippery road surface. This report deal with a simplified control technique which simultaneously controls right and left wheels on each front or rear axle. Both front wheels are controlled in response to a signal from the front wheel with the least slip, while both rear wheels are controlled in response to a signal from the rear wheel that has the greatest slip. A series of tests proved that this technique ensures vehicle steering ability even during panic braking. On a gravel and other rough roads, this system provided shorter stopping distance compared to other four-wheel antilock systems. It has been generally assumed that stopping distance extension on such roads is only one disadvantage of the four-wheel antilock brake system.
Technical Paper

Four Wheel Steering System with Rear Wheel Steer Angle Controlled as a Function of Steering Wheel Angle

1986-02-01
860625
This paper discusses the desired steer angle characteristics of rear wheels in the new concept of four wheel steering system in which the rear wheels are controlled as a function of the steering wheel angle in a manner that the rear wheels are steered in the same direction as the front wheels when the steering wheel angle is kept within a small range while the rear wheels are steered in the opposite direction to the front in the case the steering wheel angle is steered over a larger range. This paper also indicates the basic principle of the four wheel steering system and lists items for consideration in determining the function, and then presents a variety of effects the new steering system produces on operating performances based upon a series of proving ground tests.
Technical Paper

A Vibration Transfer Reduction Technique, Making Use of the Directivity of the Force Transmitted from Road Surface to Tire

2000-03-06
2000-01-0096
While there has been an empirical rule telling suspension designers that a slight rearward inclination of the wheel travel locus could improve ride harshness performance, there has not been any quantitative proof on it, to the extent of authors' knowledge. The authors planned to analyze the phenomenon by quantitatively measuring the force transmission via suspension, to find out that the amplitude of longitudinal force transmission to the sprung mass changes significantly depending on the above inclination angle. Further investigation has lead to a conclusion that the force transmission from ground to tire has a sharp directivity. And that the relationship between this direction and the direction of wheel travel is a dominant factor, which decides the magnitude of longitudinal force transmission to the sprung mass. In order to make use of the finding, the optimal wheel center locus inclination in side view has been studied, to minimize the longitudinal force transmission.
Technical Paper

Development of Advanced Brake System for Small Motorcycles

2015-09-27
2015-01-2680
Combined Brake System for small motorcycles has been developed. In small motorcycles, some models have a hydraulic disc brake both in the front and rear wheels but many of them have a hydraulic disc front brake and a mechanical drum rear brake. Accordingly, it was necessary to develop a new system to link the hydraulic system with the mechanical system to allow an application of Combined Brake System to these models. In this paper, a CBS having a new configuration is described where a disc brake and a drum brake are linked in a simple lever structure of an input force distributor, and an inhibitor spring at the foot pedal. With this mechanism equipped, the distribution of brake forces is controlled. When a large input force is applied, a large proportion of brake force is applied to the front brake to obtain adequate deceleration. When a mild input force is applied, which is frequently operated, the brake force proportion is large in the rear compared to the front.
Technical Paper

Application of Road Load Prediction Technique for Suspension Durability Input Condition

2014-04-01
2014-01-0863
The aim discussed in this paper is to show a technique to predict loads input to the wheels, essential to determining input conditions for evaluation of suspension durability, by means of full vehicle simulations using multi body analysis software Adams/Car. In this process, model environments were built to enable reproduction of driving modes, and a method of reproducing the set-up conditions of a durability test vehicle was developed. As the result of verification of the accuracy of the simulations in the target driving modes, good correlation for waveforms can be confirmed. And also confirm a good correlation in relation to changes of input load due to changes in suspension specifications.
Technical Paper

Study of Knocking Damage Indexing Based on Optical Measurement

2015-04-14
2015-01-0762
Attempts were made to measure knocking phenomenon by an optical method, which is free from influences of mechanical noises and is allowing an easy installation to an engine. Using a newly developed high durability optical probe, the light intensity of hydroxyl radical component, which is diffracted from the emitted light from combustion, was measured. The intensity of this emission component was measured at each crank angle and the maximum intensity in a cycle was identified. After that, the angular range in which the measured intensity exceeded 85% of this maximum intensity was defined as “CA85”. When a knocking was purposely induced by changing the conditions of the engine operation, there appeared the engine cycles that included CA85 less than a crank angle of 4 degrees. The frequency of occurrence of CA85 equal to or less than 4 degrees within a predetermined number of engine cycles, which can be interpreted as a knocking occurrence ratio, was denoted as “CA85-4”.
Journal Article

Development of Motor with Heavy Rare Earth-Free Magnet for Two-Motor Hybrid System

2019-04-02
2019-01-0600
Conventional HEV motors use neodymium magnets with added heavy rare earths, to realize high output and size reduction. However, deposits of heavy rare earths such as Dysprosium (Dy) and Terbium (Tb) are unevenly distributed, so it is important to reduce the amount used, because of supply issue and material cost. In this paper, the application of a heavy rare earth-free magnet is considered on the new motor for a two-motor hybrid system. Compared to conventional neodymium magnets, heavy rare earth free magnets tend to have low coercivity. Also, heavy rare earth-free magnet have low thermal durability, so it is not easy to apply them to motors for a two-motor hybrid system, which requires high output and small size. The motor requires twice as much torque and six times output than one-motor hybrid system. Increase demagnetization resistance and magnet cooling performance is studied by development of the new motor.
Technical Paper

52 Development of a Four-stroke Engine with Turbo Charger for Personal Watercraft

2002-10-29
2002-32-1821
There is a movement to apply emission control in a marine engine as well due to high public awareness of environmental concern in the United States. We started at the development of 3-seater Personal Watercraft (PWC) equipped with 4-stroke engines in taking environment conformity and potential into account. The PWC employed series 4-cylinder 1100cc displacement engine that has been used for mass production motorcycles. The engine was modified to satisfy requirements for PWC, as a marine engine, such as performance function and corrosion. In order to achieve greater or equal power/weight ratio as against two-stroke PWCs, a four-stroke engine for PWC with an exhaust turbo charger was developed. As a result, we succeeded in developing an engine that attained top-level running performance and durability superior to competitors' 2-stroke engines.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Journal Article

Study on Wheel Stiffness Considering Balance between Driving Stability and Weight

2015-04-14
2015-01-1755
This paper studies various wheel stiffness configurations, with the aim of enhancing driving stability while minimizing the increase in weight associated with an increase in stiffness. Reinforcement was added to the wheel disk and the wheel rim of standard aluminum wheels for passenger vehicles in order to produce four wheels with different stiffness configurations. The effects of disk stiffness and rim stiffness on tire contact patch profiles and driving stability were quantitatively evaluated. From the results of tests with the four wheels, it was observed that disk stiffness and rim stiffness have differing effects on tire contact patch profiles, and on driving stability. Disk stiffness influences especially tire contact patch length, and tire contact patch length influences especially maneuverability in driving stability. Rim stiffness influences especially tire contact patch area, and tire contact patch area influences especially stability in driving stability.
X