Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

External Flow Analysis Over a Car to Study The Influence of Different Body Profiles Using CFD

2001-10-16
2001-01-3085
A vehicle’s performance and fuel economy plays an important role in obtaining a larger market share in the segment. This can be best achieved by optimizing the aerodynamics of the vehicle. Aerodynamics can be improved by altering the bodylines on a vehicle. Its drag coefficient can be maintained at a minimum value by properly designing various component profiles. The stability of a vehicle and Passenger comfort are affected by wind noise that is related to the aerodynamics of a vehicle. To study the effects of the above-mentioned parameters, the vehicle is tested inside a wind tunnel. In this paper, the authors study the body profile for different vehicles and analyze them using Computational Fluid Dynamics software - FLUENT. To study the influence of different body profiles on drag coefficient, 3 different vehicle segments are considered.
Technical Paper

Power Systems Infrastructure of Hybrid Electric Fuel Cell Competition Go Kart

2017-10-08
2017-01-2452
This paper documents the electrical infrastructure design of a Hybrid Go Kart competition vehicle which includes a dual Fuel Cell power system, Ultra Capacitors for energy storage, and a dual AC induction motor capable of independent drive. The Kart was built primarily to compete in the 2009 Formula Zero international event. This paper emphasized the vehicle model and control strategy as a result of three (3) graduate student research projects. The vehicle was fabricated and tested but did not participate in the race competition since the race organization folded. The vehicle model was developed in Simulink to determine whether the fuel cell and ultra-capacitor combination will be sufficient for peak transient power requirement of 14 kW. The vehicle’s functional description and performance specifications are documented including the integration of the fuel cell power modules, energy storage system, power converters, and AC motor and motor controllers.
Technical Paper

Simulation Study of Vehicle Handling Characteristics on Snowy and Icy Terrain

2023-04-11
2023-01-0902
Safety is considered one of the most important parameters when designing a ground vehicle. The adverse effect of weather on a vehicle can lead to a surge in safety issues and accidents. Several safety assistance systems are available in modern vehicles, which are designed to lessen the negative effects of weather hazards. Although these safety systems can intervene during crucial conditions to avoid accidents, driving a vehicle on snowy or icy terrain can still be a challenging task. Road conditions with the least tire-road friction often results in poor vehicle handling, and without any kind of safety system it can lead to mishaps. With the use of Adams Car software and vehicle dynamics modeling, a realistic relationship between the vehicle and road surface may be established. The simulation can be used to have a better understanding of vehicle handling in snowy and icy conditions, tire-ice interaction, and tire modeling.
Technical Paper

Designing Axial Flow Fan for Flow and Noise

1999-09-14
1999-01-2817
A comprehensive finite element methodology is developed to predict the compressible flow performance of a non-symmetric 7-blade axial flow fan, and to quantify the source strength and sound pressure levels at any location in the system. The acoustic and flow performances of the fan are predicted simultaneously using a computational aero-acoustic technique combining transient flow analysis and noise propagation. The calculated sound power levels compare favorably with the measured sound power data per AMCA 300-96 code.
Technical Paper

A Non-Contact Technique for Vibration Measurement of Automotive Structures

2019-06-05
2019-01-1503
The automotive and aerospace industries are increasingly using the light-weight material to improve the vehicle performance. However, using light-weight material can increase the airborne and structure-borne noise. A special attention needs to be paid in designing the structures and measuring their dynamics. Conventionally, the structure is excited using an impulse hammer or a mechanical shaker and the response is measured using uniaxial or multi-axial accelerometers to obtain the dynamics of the structure. However, using contact-based transducers can mass load the structure and provide data at a few discrete points. Hence, obtaining the true dynamics of the structure conventionally can be challenging. In the past few years, stereo-photogrammetry and three-dimensional digital image correlation have received special attention in collecting operating data for structural analysis. These non-contact optical techniques provide a wealth of distributed data over the entire structure.
Journal Article

Noise, Vibration, and Harshness Considerations for Autonomous Vehicle Perception Equipment

2020-04-14
2020-01-0482
Automakers looking to remake their traditional vehicle line-up into autonomous vehicles, Noise, Vibration, and Harshness (NVH) considerations for autonomous vehicles are soon to follow. While traditional NVH considerations still must be applied to carry-over systems, additional components are required for an autonomous vehicle to operate. These additional components needed for autonomy also require NVH analysis and optimization. Autonomous vehicles rely on a suite of sensors, including Light Detection and Ranging (LiDAR) and cameras placed at optimal points on the vehicle for maximum coverage and utilization. In this study, the NVH considerations of autonomous vehicles are examined, focusing on the additional perception equipment installed in autonomous vehicles.
Journal Article

Preliminary Study of Perceived Vibration Quality for Human Hands

2019-06-05
2019-01-1522
A large body of knowledge exists regarding the effects of vibration on human beings; however, the emphasis is generally on the damaging effects of vibration. Very little information has been published regarding the effect of vibration on perceived consumer product quality. The perceived loudness of a product is quantified using the Fletcher-Munson equal loudness curves, but the equivalent curves for perceived vibration amplitude as a function of amplitude and frequency are not readily available. This “vibration quality” information would be valuable in the design and evaluation of many consumer products, including automobiles. Vibration information is used in the automobile design process where targets for steering wheel, seat track, and pedal vibration are common. For this purpose, the vibration information is considered proprietary and is generally applicable to a narrow frequency range. In this investigation, work paralleling the original Fletcher-Munson study is presented.
Journal Article

Design and Optimization of a 98%-Efficiency On-Board Level-2 Battery Charger Using E-Mode GaN HEMTs for Electric Vehicles

2016-04-05
2016-01-1219
Most of the present EV on-board chargers utilize a three-stage design, e.g., AC/DC rectifier, DC to high-frequency AC inverter, and AC to DC rectifier, which limits the wall-to-battery efficiency to ∼94%. To further increase the efficiency and power density, a matrix converter is an excellent candidate directly converting grid AC to high-frequency AC thereby saves one stage. However, its control complexity and the high cost of building the back-to-back switches are barriers its acceptance. Instead, this paper adopts the 650V E-mode GaN HEMTs to build a level-2 on-board charger using the indirect matrix topology. The input voltage is 80∼260VAC, the battery voltage is 200∼500VDC and the rated power is 7.2kW. Variable switching frequency is combined with phase-shift control to realize the zero-voltage switching. To further increase the system efficiency, four GaN HEMTs are paralleled to form one switching module with a novel gate-drive technology.
Book

Carriages Without Horses

1993-08-01
In September 1893, little could 23-year-old mechanic J. Frank Duryea dream of the changes that would be brought about by his creation -- a frail gasoline buggy that made its debut on the streets of Springfield, Massachusetts. Charles E. and J. Frank Duryea, two brothers from rural Illinois, were the founders of the American automobile industry. The Duryea Motor Wagon company was the first company organized in the United States for the manufacture of automobiles. The attention-getting, older brother Charles demanded - and to date has received - the principal credit for these pioneering accomplishments. A bitter family feud between the brothers, which was even carried on by their families after their deaths, further muddied the question about the individual brothers' contributions. However, in Carriages Without Horses: J. Frank Duryea and the Birth of the American Automobile Industry, historian and author Richard P. Scharchburg proves that the quiet, self-effacing younger brother J.
Technical Paper

Cradle to Grave Comparison on Emission Produced by EV and ICE Powertrains

2024-04-09
2024-01-2402
Since the popularization of the Electric Vehicle (EV) there has been a large movement of consumers, governments, and the automotive industry due to its environmentally friendly characteristics. Unlike an IC engine, the batteries use multitudes of rare earth minerals and complex manufacturing processes which in some cases have been shown to produce as many emissions as an ICE vehicle over its entire lifespan. Another unnoticed important environmental concern has been the final recycling and disposal of the power train after its use. Unlike an ICE engine, which can be melted down or re-used, recycling batteries are much more difficult. In most cases the recycling process and the byproducts produced can be very harmful to the environment. This paper aims to be a complete cradle-to-grave analysis of all emissions produced in the life of an EV battery.
X