Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effect of Local Mesh Refinement on Inverse Numerical Acoustics

2010-06-09
2010-01-1413
Inverse numerical acoustics is a method which reconstructs the source surface normal velocity from the sound measured in the near-field around the source. This is of particular interest when the source is rotating or moving, too light or too hot to be instrumented by accelerometers. The use of laser vibrometers is often of no remedy due to the complex shape of the source. The Inverse Numerical Acoustics technique is based on the inversion of transfer relations (Acoustic Transfer Vectors) using truncated Singular Value Decomposition (SVD). Most of the time the system is underdetermined which results in a non unique solution. The solution obtained by the truncated SVD is the minimal solution in the RMS sense. This paper is investigating the impact of non homogeneities in the mesh density (local mesh refinement) on the retrieved solution for underdetermined systems. It will be shown that if transfer quantities are inverted as such, big elements get a higher weight in the inversion.
Technical Paper

Challenges in Vibroacoustic Vehicle Body Simulation Including Uncertainties

2020-09-30
2020-01-1571
During the last decades, big steps have been taken towards a realistic simulation of NVH (Noise Vibration Harshness) behavior of vehicles using the Finite Element (FE) method. The quality of these computation models has been substantially increased and the accessible frequency range has been widened. Nevertheless, to perform a reliable prediction of the vehicle vibroacoustic behavior, the consideration of uncertainties is crucial. With this approach there are many challenges on the way to valid and useful simulation models and they can be divided into three areas: the input uncertainties, the propagation of uncertainties through the FE model and finally the statistical output quantities. Each of them must be investigated to choose sufficient methods for a valid and fast prediction of vehicle body vibroacoustics. It can be shown by rough estimation that dimensionality of the corresponding random space for different types of uncertainty is tremendously high.
Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
Journal Article

Development of Fracture Model for Laser Screw Welding

2016-04-05
2016-01-1344
This paper describes the development of a fracture finite element (FE) model for laser screw welding (LSW) and validation of the model with experimental results. LSW was developed and introduced to production vehicles by Toyota Motor Corporation in 2013. LSW offers superb advantages such as increased productivity and short pitch welding. Although the authors had previously developed fracture FE models for conventional resistance spot welding (RSW), a fracture model for LSW has not been developed. To develop this fracture model, many comprehensive experiments were conducted. The results revealed that LSW had twice as many variations in fracture modes compared to RSW. Moreover, fracture mode bifurcations were also found to result from differences in clearance between welded plates. In order to analyze LSW fracture phenomena, detailed FE models using fine hexahedral elements were developed.
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Journal Article

Development of Prediction Method for Engine Compartment Water Level by Using Coupled Multibody and Fluid Dynamics

2017-03-28
2017-01-1328
When vehicles run on the flooded road, water enters to the engine compartment and sometimes reaches the position of the air intake duct and electrical parts and causes the reliability problems. Numerical simulation is an effective tool for this phenomenon because it can not only evaluate the water level before experiment but also identify the intrusion route. Recently, the gap around the engine cooling modules tends to become smaller and the undercover tends to become bigger than before in order to enhance the vehicle performance (e.g., aerodynamics, exterior noise). Leakage tightness around the engine compartment becomes higher and causes an increase of the buoyancy force from the water. Therefore the vehicle attitude change is causing a greater impact on the water level. This paper describes the development of a water level prediction method in engine compartment while running on the flooded road by using the coupled multibody and fluid dynamics.
Journal Article

Tire and Road Input Modeling for Low-Frequency Road Noise Prediction

2011-05-17
2011-01-1690
This paper presents a modeling method for prediction of low-frequency road noise in a steady-state condition where rotating tires are excited by actual road profile undulation input. The proposed finite element (FE) tire model contains not only additional geometric stiffness related to inflation pressure and axle load but also Coriolis force and centrifugal force effects caused by tire rotation for precise road noise simulation. Road inputs act on the nodes of each rib in the contact patch of the stationary tire model and move along them at the driving velocity. The nodes are enforced to displace in frequency domain based on the measured road profile. Tire model accuracy was confirmed by the spindle forces on the rotating chassis drum up to 100Hz where Coriolis force effect should be considered. Full vehicle simulation results showed good agreement with the vibration measurement of front/rear suspension at two driving velocities.
Journal Article

Development of Spark Plug for Ion Current Misfire Detection System

2012-04-16
2012-01-1253
In this paper, the authors introduce the spark plug for misfire detection system by ion current. In order to realize high accuracy misfire detection, the signal of ion current must be larger than that of noise. For maintaining ion signal in all designed lifetime, the configuration and initial condition of spark position are derived by an experiment and consideration about degradation in use. Additionally, the cause of noise is determined by an observation and a theoretical study, and we indicate the method to inhibit noise efficiently. Finally, effect of the methods found by these two approaches is confirmed with an engine, and we propose specifications of spark plug satisfying the condition that realize high accuracy detection by ion current.
Journal Article

Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018-04-03
2018-01-0693
This article proposes a rubber suspension bushing model considering amplitude dependence as a useful tool at the initial design phase. The purpose of this study is not to express physical phenomena accurately and in detail and to explore the truth academically, but to provide a useful design method for initial design phase. Experiments were carried out to verify several dynamic characteristics of rubber bushings under vibration up to a frequency of 100 Hz, which is an important frequency range when designing ride comfort performance. When dynamic characteristic theory and the geometrical properties of the force-displacement characteristic curve were considered using these dynamic characteristics as assumptions, an equation was derived that is capable of calculating the dynamic stiffness under an arbitrary amplitude by identifying only two general design parameters (dynamic stiffness and loss factor) under a reference amplitude.
Technical Paper

Investigation of Gravel Noise Mechanisms and Impact Noise Transfer

2007-05-15
2007-01-2274
Impact noise, inside a car, due to tire-launched gravel on the road can lead to loss of quality perception. Gravel noise is mainly caused by small-sized particles which are too small to be seen on the road by the driver. The investigation focuses on the identification of the mechanisms of excitation and transfer. The spatial distribution of the particles flying from a tire is determined, as well as the probable impact locations on the vehicle body-panels. Finally the relative noise contributions of the body-panels are estimated by adding the panel-to-ear transfer functions. This form of Transfer-Path-Analysis allows vehicle optimization and target setting on the level of the tires, exterior panel treatment and isolation.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

Noise and Vibration Reduction Technology in the Development of Hybrid Luxury Sedan with Series/Parallel Hybrid System

2007-05-15
2007-01-2232
For a luxury sedan, quietness is a major selling point, and a hybrid luxury sedan is expected to be especially quiet. Therefore, in the development of the hybrid luxury sedan, every possible effort is needed to reduce the hybrid system noise in order to ensure a level of quietness far superior to that of an ordinary gasoline-powered vehicle. In addition, the noise and vibration phenomena that are particular to vehicles with longitudinal power trains require special reduction technologies. This paper first describes the superior quietness of hybrid luxury vehicles in comparison with ordinary gasoline-powered vehicles. This paper then addresses the development issues of vibration during engine starting, engine booming noise, and motor noise, explaining the mechanisms by which they are generated and the technologies employed to reduce them.
Technical Paper

Experimental Analysis of Acoustic Coupling Vibration of Wheel and Suspension Vibration on Tire Cavity Resonance

2007-05-15
2007-01-2345
It is difficult to improve tire cavity noise since the pressure of cavity resonance acts as a compelling force, and its low damping and high gain characteristics dominate the vibration of both the suspension and body. For this reason, the analysis described in this article aimed to clarify the design factors involved and to improve this phenomenon at the source. This was accomplished by investigating the acoustic coupling vibration mode of the wheel, which is the component that transmits the pressure of cavity resonance at first. In addition, the vibration characteristic of suspension was investigated also. A speaker-equipped sound pressure generator inside the tire and wheel assembly was developed and used to infer that wheel vibration under cavity resonance is a forced vibration mode with respect to the cavity resonance pressure distribution, not an eigenvalue mode, and this phenomenon may therefore be improved by optimizing the out-of-plane torsional stiffness of the disk.
Technical Paper

NVH Analysis of Balancer Chain Drives with the Compliant Sprocket of the Crankshaft with a Dual-Mass Flywheel for an Inline-4 Engine

2007-05-15
2007-01-2415
The work presented in this paper outlines the design and development of a compliant sprocket for balancer drives in an effort to reduce the noise levels related to chain-sprocket meshing. An experimental observation of a severe chain noise around a resonant engine speed with the Dual-Mass Flywheel (DMF) and standard build solid (fixed) balancer drive sprocket. Torsional oscillation at the crankshaft nose at full load is induced by uneven running of crankshaft with a dual-mass flywheel system. This results in an increase of the undesirable impact noise caused by the meshing between the chain-links and the engagement/disengagement regions of sprockets, and the clatter noise from the interaction between the vibrating chain and the guides. This paper evaluates and discusses the benefits that the compliant sprocket design provided. A multi-body dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
Technical Paper

Development of Reduction Method for Whirl Noise on Turbocharger

2007-10-29
2007-01-4018
The whirl noise on turbochargers is generated by the self-induced vibration of the oil film in the bearing system. The noise is characterized by its frequency behavior that doesn't increase proportionately to the turbo shaft speed. It tends to be felt annoying. In this paper, to improve the whirl vibration, a statistical analysis approach was applied to the bearing specifications. The results from experiments showed that the bearing clearances played an important role in the reduction of the whirl vibration. To further investigate into this phenomenon, the shaft oscillation behavior was measured. And a vibration simulation program for the turbocharger bearing system was also developed.
Technical Paper

A Study of Vibration Characteristics on Final Gear Unit

1990-02-01
900393
Whinning gear noise(final gear noise), one of the causes for automobile interior noise is due to the exciting force of final gear kit and as a general countermeasure for this problem, a reduction of resonance level in transfer system and better meshing of gears have been utilized. However,vibration characteristics of final gear unit have not been considered much in this case. Authors have executed impacting test on final gear unit and confirmed its vibration characteristics. Based on this fact,vibration model consisting of bearings and gears spring system was constructed to evaluate vibration characteristics of final gear unit along with the results obtained from final gear unit of front engine,rear drive passenger car.
Technical Paper

Stereo Vision System for Advanced Vehicle Safety System

2007-04-16
2007-01-0405
In this paper, we will introduce a stereo vision system developed as a sensor for a vehicle's front monitor. This system consists of three parts; namely, a stereo camera that collects video images of the forward view of the vehicle, a stereo ECU that processes its output image, and a near-infrared floodlight for illuminating the front at night. We were able to develop an obstacle detection function for the Pre-Crash Safety System and also a traffic lane detection function for a Lane-Keeping Assist System. Especially in regard to the obstacle detection function, we were able to achieve real-time processing of the disparity image calculations that had formerly required long processing times by using two types of recently developed LSIs.
Technical Paper

Development of Direct and Fast Response Gas Measurement

2008-04-14
2008-01-0758
Due to regulations for even lower levels of pollutants in exhaust gas, development of advanced combustion techniques and increasingly efficient catalysts has become more crucial than ever. One of the essential technologies to achieve this goal is an advanced measurement method, which can detect the characteristics of exhaust gas, such as temperature and chemical compositions, in real-time to clarify their reaction mechanisms. A direct and fast response (1ms) measurement technique was developed based on diode laser absorption spectroscopy and applied to practical engine exhaust measurement to prove the validity of this technology for various applications such as clarification of engine start phenomena and improvement of EGR controls.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
X