Refine Your Search

Topic

Search Results

Technical Paper

Shearographic Nondestructive Testing for High-Pressure Composite Tubes

2018-04-03
2018-01-1219
In response to the need for lightweight design in industries, composite materials are increasingly used to replace traditional metal tubes. However, subsurface defects such as voids, delaminations, and microcracks are still remaining common issues in composite pressure tubes. This paper introduces an application of Digital Shearography method in the Non-Destructive Testing (NDT) of high-pressure composite tubes. A new prototype high-pressure composite tube with a working pressure of 1000 psi range is tested using the digital Shearography method. To detect the sub-surface defects, a reference Shearographic phase map is created at 0 psi state, after that the composite tube is pressured using an oil pump, then the second Shearographic phase map is created at the pressured state. By subtracting the two shearographic phase maps created in different pressure state, the sub-surface defects can be identified clearly. The Shearographic NDT result is then compared with CT scan result.
Journal Article

Analyzing Field Failures of Engine Valve Springs in Presence of Non Metallic Inclusions by Applying Statistical and Fracture Mechanics Models

2009-04-20
2009-01-0528
The reliability of engine valve springs is a very important issue from the point of view of warranty. This paper presents a combined experimental and statistical analysis for predicting the fatigue limit of high tensile engine valve spring material in the presence of non-metallic inclusions. Experimentally, Fatigue tests will be performed on valve springs of high strength material at different stress amplitudes. A model developed by Murakami and Endo, which is based on the fracture mechanics approach, Extreme value statistics (GUMBEL Distribution) and Weibull Distribution will be utilized for predicting the fatigue limit and the maximum inclusion size from field failures. The two approaches, experimental and theoretical, will assist in developing the S-N curve for high tensile valve spring material in the presence of non-metallic inclusions.
Technical Paper

Redesign of an Assembly Line Stop Mechanism for an Automated Palletized Transport System

1998-02-23
980745
A description is provided detailing the results of the quality function deployment process used to identify customer needs and requirements. Through this process two primary project goals were developed consisting of integrating an electrical-solenoid actuated device into existing space constraints and providing cost reduction alternatives. A static and dynamic analysis was initially required to find the boundary conditions of the external forces imposed on the existing pneumatic device while being subjected to multiple pallets impacting the stop block assembly. Further static analysis was conducted to find the internal forces imposed on the stop arm subassembly in order to properly size the electrical solenoid. Subsequent research into various solenoids led to two solenoid manufacturers evaluated by means of a design evaluation matrix.
Technical Paper

Effect of Temperature on Weld Strength in Chrome Moly Space Frames

2006-12-05
2006-01-3648
Chromium Molybdenum Steel (AISI 4130), commonly referred to as “Chrome Moly”, is one of the most popular materials used in the construction of tubular space frames and chassis components for racing applications. Its high strength, light weight and comparably low material cost make the reasons for its popularity quite obvious. However, there is one problem that is commonly overlooked: maintaining the strength component of Chrome Moly in areas exposed to high levels of heat followed by rapid cooling during welding. This paper seeks to better understand the affects of cooling due to welding on the strength of Chrome Moly tubing.
Technical Paper

Minimizing Cost of Material Variances in Printed Circuit Board Assembly

2007-04-16
2007-01-0781
Controlling the Cost of Variance is essential to the manufacturing process of Printed Circuit Board Assembly for low volume high mix production. The material variance is identified as the additional components and resources consumed beyond the minimum required to complete the project. This Quantity Variance occurs at the effects of defects at key steps of the manufacturing process. Such occurrences result in the need to purchase additional components for the completion of the order. These additional components termed Quantity Variance alter the sequence of the manufacturing process affecting quality, timely delivery of the job and directly impacting company profitability.
Technical Paper

Shrinkage Analysis of a Constrained Thin Walled Injection Molded Component Using a Traditional Flatbed Scanner and Photometric Techniques

2008-04-14
2008-01-1447
A study was performed to determine the effects of varying the wall thickness and material glass fiber concentration for parallel and perpendicular shrinkage rates for a constrained thin-walled box shaped component. An analysis of the shrinkage for the bottom portion of a 3 dimensional constrained thin walled injection molded component was performed using measurements made from bitmap images of the components that were obtained from a traditional flatbed scanner. The shrinkage rates were determined by comparing mold cavity hatch lines to the correlating transposed hatch lines on the plastic molded component. The perpendicular and parallel shrinkage rates were determined and are discussed as a function of thickness and glass fiber content. A wide range of processing control factors was used in the study.
Technical Paper

Cold Temperature Effects on Spark Plug Performance

1998-10-19
982725
Fouling spark plugs on an internal combustion engine is greatly influenced by cold temperatures, especially at older assembly plants where the vehicle is moved several times because of discontinuities in the assembly line. To transition the vehicle, the operator starts the vehicle, places it in drive and accelerates rapidly, then shuts the vehicle off. This process only lasts ten to fifteen seconds and does not allow the spark plug or engine to get to a high enough operating temperature to evaporate away the fuel, which fouls the spark plugs. A spark plug fouling test is devised and is used to investigate which properties of fuel play the most significant anti-fouling role. Some additives believed to have anti-fouling properties will also be investigated to determine their significance. The anti-fouling fuel will then be implemented at the assembly plants.
Technical Paper

Redesign of a Differential Housing for a Formula Car (FSAE)

1998-11-16
983077
A unique differential assembly was needed for the Lawrence Technological University (LTU) SAE Formula race car. Specifically, a differential was required that had torque sensing capabilities, perfect reliability, high strength, light weight, the ability to withstand inertia and shock loading, a small package, no leaks, the ability to support numerous components. In that regard, an existing differential was selected that had the torque sensing capabilities, but had deficiencies that needed to be fixed. Those deficiencies included the following: Differential unit was over 4 kg unmounted, with no housing. This was considered too heavy, when housed properly. Bearing surface was provided on only one end of the carrier. This design provides insufficient bearing surface to support either the differential housing or half-shafts The internal drive splines integral to the case are not optimized for a perpendicular drive/axle arrangement, such as, a chain drive.
Technical Paper

LED Junction Temperature Measurement and its Applications to Automotive Lamp Design

2004-03-08
2004-01-0224
There are more and more LEDs being used in an automobile to replace the incandescent lamps. All those applications require high brightness LED work at high ambient temperature. However, the luminous flux output of a LED is directly related to its junction temperature. Higher the LED junction temperature, lower the luminous output from the LED. In order to efficiently apply LED to an automotive application the temperature effects on luminous flux must be accounted for in any design of a LED assembly. A LED junction temperature measurement system is described in this paper to measure the differential junction temperature between a reference LED and the LED under test. And the results are used to improve the LED assembly design.
Technical Paper

All-Wheel Drive Vehicle Energy Efficiency Evaluation

2004-03-08
2004-01-0864
All-wheel drive (AWD) vehicle performance considerably depends not only on total power amount needed for the vehicle motion in the given road/off-road conditions but also on the total power distribution among the drive wheels. In turn, this distribution is largely determined by the driveline system and its mechanisms installed in power dividing units. They are interwheel, interaxle reduction gears, and transfer cases. The paper presents analytical methods to evaluate the energy and, accordingly, fuel efficiency of vehicles with any arbitrary number of the drive wheels. The methods are based on vehicle power balance equations analysis and give formulas that functionally link the wheel circumferential forces with slip coefficients and other forces acting onto an AWD vehicle. The proposed methods take into consideration operational modes of vehicles that are tractive mode, load transportation, or a combination of both.
Technical Paper

An Adjustable Aluminum Differential

2001-03-05
2001-01-0883
The 2000 Formula SAE Team at Lawrence Technological University (LTU) has designed a chain driven, three-piece aluminum differential unique from past years. This innovative design introduces an adjustable chain mount replacing conventional shackles. Made completely of aluminum, this device moves the entire rear drive train. The gear set remains to be limited slip with a student designed housing. The idea of an aluminum housing with manufactured gear set is a continued project at LTU. After cutting approximately 33% from the weight of the 1999 differential, the 2000 is geared toward a simpler, and smaller design, easier assembly and lighter weight. After reading this brief overview, the idea of this paper is to provide an understanding of the reasoning behind the choices made on the LTU driveline team. FIGURE 1
Technical Paper

The Study of a Cockpit with a Fixed Steering Wheel Position: Methods and Model

2003-06-17
2003-01-2180
An ergonomics study was conducted in a mock-up with a fixed steering wheel position. Drivers adjusted the seat and pedals to a comfortable position. A three-dimensional coordinate measurement machine (CMM) was used to measure the comfortable position of 21 participants. Proven test methods were used to collect the posture data. A model is described to assist in seat and pedal placement for cockpit design.
Technical Paper

Controlled Angle Sound Transmission Loss Experiment

2003-05-05
2003-01-1630
This paper reviews how sound transmission loss (STL) of insulators is affected by gravitational and thermal effects. A special STL test fixture was designed and fabricated to quickly and accurately obtain the STL measurement of a sample oriented at various controlled angles. The STL apparatus was designed to roll into a large reverberation chamber and act as the anechoic termination for a two-microphone approach to measuring STL. The fixture was also built with the intention of studying the temperature effects on a material's STL performance. A variety of samples, including lightweight and traditional barrier decoupled insulators, were tested in the horizontal, vertical, and inverted positions to evaluate gravitational/inertial effects. Thermal effects were investigated by bringing the STL apparatus and sample to a low temperature by moving outdoors, and then rolling the system into the reverberation chamber, at normal room temperature.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Terrain Truck: Control of Wheel Rotational Velocities and Tire Slippages

2011-09-13
2011-01-2157
The dynamics of an AWD vehicle is determined by the interactions between the vehicle's wheels and the tire contact surface. Understanding and controlling these interactions drives the vehicle mobility and energy efficiency. In this paper new issues related to tire slippage control are addressed. The paper analytically demonstrates that two tires on the same axle with the same rotational speeds can have different slippages when the normal reaction and inflation pressure vary due to motion conditions. Hence, a new method is proposed to control the rotational velocity of the wheels in a way that provides the same slippages of the tires by accounting for changes in the normal load and tire inflation pressure. This approach is especially beneficial for vehicles with individual (electric) wheel drives which can be individually controlled by introducing the proposed algorithm for controlling both the vehicle linear velocity and the tire slippages.
Technical Paper

Fatigue Life Improvement through the “NOVA” Process

2013-04-08
2013-01-1400
The experimental methods focused on utilizing the newly developed NOVA induction heating and hardening manufacturing process as an adapted method to produce high performance engine valve springs. A detailed testing plan was used to evaluate the expected and theorized possibility for fatigue life enhancement. An industry standard statistical analysis method and tools were employed to objectively substantiate the findings. Fatigue cycle testing using NOVA induction-hardened racing valve springs made of ultra-high tensile material were compared to data for springs with traditional heat treatment and those with standard processing. The results were displayed using Wöhler and modified Haigh fatigue life diagrams. The final analysis suggests that NOVA processed springs have a seemingly slight, yet significant benefit in fatigue life of 5 - 7% over springs processed through a competing method.
Technical Paper

Correlations Among Monotonic Tensile Properties and Simple Approximations that Predict Strain-Controlled Fatigue Properties of Steels

2013-04-08
2013-01-1213
In this study, a new nonlinear correlation between Brinell hardness and ultimate tensile strength is proposed. The correlation factor in this case is higher than that found in the current literature. The ultimate tensile strength is replaced by an equivalent hardness expression in the Modified Universal Slopes Method. This change results in fatigue parameters that are predicted using hardness, true fracture ductility, and modulus of elasticity. This new fatigue life prediction approach is compared with the original Modified Universal Slopes method and experimental data in literature. This method is valid for steel with hardness that ranges from 150HB to 660HB. The results show that this method provides better approximations of the strain-life curves when compared with the Modified Universal Slopes and experimental data.
Technical Paper

Tire Longitudinal Elasticity and Effective Rolling Radii: Experimental Method and Data

2005-04-11
2005-01-1823
To evaluate traction and velocity performance and other operational properties of a vehicle requires data on some tire parameters including the effective rolling radius in the driven mode (no torque on a wheel), the effective radii in the drive mode (torque applied to the wheel), and also the tire longitudinal elasticity. When one evaluates vehicle performance, these parameters are extremely important for linking kinematic parameters (linear velocity and tire slip coefficient) with dynamic parameters (torque and traction net force) of a tired wheel. This paper presents an experimental method to determine the above tire parameters in laboratory facilities. The facilities include Lawrence Technological University's 4x4 vehicle dynamometer with individual control of each of the four wheels, Kistler RoaDyn® wheel force sensors that can measure three forces and three moments on a wheel, and a modern data acquisition system. The experimental data are also presented in the paper.
Technical Paper

Design of an Aluminum Differential for a Racing Style Car

2000-03-06
2000-01-1156
The 1999 Lawrence Technological University (LTU) drive train consists of a sprocket and chain assembly that delivers the torque, developed by a 600cc Honda F3 engine, to the rear wheels. The torque is transferred through a limited-slip, torque sensing differential unit comprised of a gear set in a student designed housing. The 1999 differential is a second-generation aluminum housing. The idea of using aluminum was first attempted with the 1998 team who successfully completed and used aluminum despite much complexity and a few design flaws. Therefore, in the LTU Formula Team's continuing effort to optimize the design, a new less complex design was conceived to house the gear set. This innovative design reduces the number of housing components from three in 1998, to two in 1999.
Technical Paper

Traction Control Applications in Engine Control

2000-12-04
2000-01-3464
Traction control is an electronic means of reducing the wheel spin caused by the application of excessive power for the valuable grip. Wheel spin can result in loss control of the car, reduce acceleration and cause tire wear. In the front wheel tire the loss grip is experienced as underwater, where the front of the car ‘pushes’ forward, not turning as much as the driver has exposed by turning the tearing. In the rear wheels slip causing oversteer, where the rear of the car swings around, turning much sharper than the driver anticipated. The result of all these problems is that the driver starts loosing control of the vehicle, which is undesirable. With the new design of the Traction Control System, the amount of the wheel slippage is precisely controlled. In racing, this means corner can be taken constantly quicker, with system applying the maximum power possible while the driver remains in total control.
X