Refine Your Search

Topic

Search Results

Technical Paper

Improving Centrifugal Pump Performance under Low Flow Rates by Adding Designed Cylindrical Disks at the Impeller Inlet

2020-04-14
2020-01-1165
Enhancing the performance of centrifugal pumps requires a thorough understanding of the internal flow. Flow simulation inside the pump can help understand the rotatory motion induced by the impellers, as well as the flow instabilities. The flow inside a centrifugal pump is three dimensional, disturbed and accompanied by tributary flow structures. When a centrifugal pump operates under low flow rates, a secondary flow known as recirculation starts to begin. The separation of flow occurs which creates vortices and decreases local pressure which induces cavitation. This phenomenon of recirculation will rise the Net Positive Suction Head Required (NPSHR). This work aims to improve the pump efficiency under low flow rates by adding multiple cylindrical disks at the pump inlet section to suppress the flow recirculation. In this study, a numerical simulation is carried out to investigate the influence on the pump internal flow by adding multi cylindrical disks.
Journal Article

Effect of Operational Testing and Trim Manufacturing Process Variation on Head Injury Criterion in FMVSS 201 Tests

2008-04-14
2008-01-1218
This paper analyzes the difference in impact response of the forehead of the Hybrid III and THOR-NT dummies in free motion headform tests when a dummy strikes the interior trim of a vehicle. Hybrid III dummy head is currently used in FMVSS201 tests. THOR-NT dummy head has been in development to replace Hybrid III head. The impact response of the forehead of both the Hybrid III dummy and THOR dummy was designed to the same human surrogate data. Therefore, when the forehead of either dummy is impacted with the same initial conditions, the acceleration response and consequently the head Injury criterion (HIC) should be similar. A number of manufacturing variables can affect the impacted interior trim panels. This work evaluates the effect of process variation on the response in the form of Head Injury Criterion (HIC).
Technical Paper

Redesign of an Assembly Line Stop Mechanism for an Automated Palletized Transport System

1998-02-23
980745
A description is provided detailing the results of the quality function deployment process used to identify customer needs and requirements. Through this process two primary project goals were developed consisting of integrating an electrical-solenoid actuated device into existing space constraints and providing cost reduction alternatives. A static and dynamic analysis was initially required to find the boundary conditions of the external forces imposed on the existing pneumatic device while being subjected to multiple pallets impacting the stop block assembly. Further static analysis was conducted to find the internal forces imposed on the stop arm subassembly in order to properly size the electrical solenoid. Subsequent research into various solenoids led to two solenoid manufacturers evaluated by means of a design evaluation matrix.
Technical Paper

Minimizing Cost of Material Variances in Printed Circuit Board Assembly

2007-04-16
2007-01-0781
Controlling the Cost of Variance is essential to the manufacturing process of Printed Circuit Board Assembly for low volume high mix production. The material variance is identified as the additional components and resources consumed beyond the minimum required to complete the project. This Quantity Variance occurs at the effects of defects at key steps of the manufacturing process. Such occurrences result in the need to purchase additional components for the completion of the order. These additional components termed Quantity Variance alter the sequence of the manufacturing process affecting quality, timely delivery of the job and directly impacting company profitability.
Technical Paper

Improvement of an LS-DYNA Fuel Delivery Module (FDM) Crash Simulation

2008-04-14
2008-01-0253
This paper proposes and evaluates improvements to a crash simulation of a fuel delivery module in a fuel tank. The simulations were performed in ANSYS/LS-DYNA. Deviations between the original simulation and test data were studied and reasons for the deviations hypothesized. These reasons stemmed from some of the simplifying assumptions of the model. Improvements consisted of incorporating plasticity and strain rate effects into the material models. Performance criteria were also directly incorporated into the material models such that non-performing portions of the model could be deactivated during the simulation. Finally, solid-fluid interactions were added into the simulation to include the momentum transfer from fuel to the fuel delivery module. It was previously thought that effects of a crash would be most severe on the module when the fuel tank was empty and the module was full with fuel.
Technical Paper

Cold Temperature Effects on Spark Plug Performance

1998-10-19
982725
Fouling spark plugs on an internal combustion engine is greatly influenced by cold temperatures, especially at older assembly plants where the vehicle is moved several times because of discontinuities in the assembly line. To transition the vehicle, the operator starts the vehicle, places it in drive and accelerates rapidly, then shuts the vehicle off. This process only lasts ten to fifteen seconds and does not allow the spark plug or engine to get to a high enough operating temperature to evaporate away the fuel, which fouls the spark plugs. A spark plug fouling test is devised and is used to investigate which properties of fuel play the most significant anti-fouling role. Some additives believed to have anti-fouling properties will also be investigated to determine their significance. The anti-fouling fuel will then be implemented at the assembly plants.
Technical Paper

Redesign of a Differential Housing for a Formula Car (FSAE)

1998-11-16
983077
A unique differential assembly was needed for the Lawrence Technological University (LTU) SAE Formula race car. Specifically, a differential was required that had torque sensing capabilities, perfect reliability, high strength, light weight, the ability to withstand inertia and shock loading, a small package, no leaks, the ability to support numerous components. In that regard, an existing differential was selected that had the torque sensing capabilities, but had deficiencies that needed to be fixed. Those deficiencies included the following: Differential unit was over 4 kg unmounted, with no housing. This was considered too heavy, when housed properly. Bearing surface was provided on only one end of the carrier. This design provides insufficient bearing surface to support either the differential housing or half-shafts The internal drive splines integral to the case are not optimized for a perpendicular drive/axle arrangement, such as, a chain drive.
Technical Paper

Spherical Beamforming and Buzz, Squeak and Rattle (BSR) Testing

2009-05-19
2009-01-2114
Control of annoying noises such as buzzes, squeaks and rattles (BSRs) is particularly important for complex products such as automobiles. This importance has become even more significant as electric vehicles become more popular, eliminating much of the ambient background vehicle noise. A customer's perception of the durability and solidness of a vehicle is based largely on sensory responses such as sound. Recent advances in beamforming technology have the potential to change the way BSR audits and vehicle development testing are done. This paper introduces the application of spherical beamforming technology to BSR testing and provides test results showing the localization accuracy of a rigid spherical array system in a vehicle cabin.
Technical Paper

Simulation and Approximation are Effective Tools for Products Development

2010-04-12
2010-01-0483
To stay competitive, new products require faster development time at low cost and good quality. Defense as well as commercial industries are forced to use analytical tools to stay competitive in a tough market. The use of simulation tools and approximation techniques in evaluating product performance during the early stages of the product development has a major impart on the product development efficiency, effectiveness, and lead time. Building physical prototypes of complex systems is expensive and it is difficult and time consuming to develop them. It is extremely beneficial to know as much as possible about the product performance and to optimize its dynamic characteristics before the first physical prototype is built.
Technical Paper

LED Junction Temperature Measurement and its Applications to Automotive Lamp Design

2004-03-08
2004-01-0224
There are more and more LEDs being used in an automobile to replace the incandescent lamps. All those applications require high brightness LED work at high ambient temperature. However, the luminous flux output of a LED is directly related to its junction temperature. Higher the LED junction temperature, lower the luminous output from the LED. In order to efficiently apply LED to an automotive application the temperature effects on luminous flux must be accounted for in any design of a LED assembly. A LED junction temperature measurement system is described in this paper to measure the differential junction temperature between a reference LED and the LED under test. And the results are used to improve the LED assembly design.
Technical Paper

An Adjustable Aluminum Differential

2001-03-05
2001-01-0883
The 2000 Formula SAE Team at Lawrence Technological University (LTU) has designed a chain driven, three-piece aluminum differential unique from past years. This innovative design introduces an adjustable chain mount replacing conventional shackles. Made completely of aluminum, this device moves the entire rear drive train. The gear set remains to be limited slip with a student designed housing. The idea of an aluminum housing with manufactured gear set is a continued project at LTU. After cutting approximately 33% from the weight of the 1999 differential, the 2000 is geared toward a simpler, and smaller design, easier assembly and lighter weight. After reading this brief overview, the idea of this paper is to provide an understanding of the reasoning behind the choices made on the LTU driveline team. FIGURE 1
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Effects of Inlet Curved Spacer Arrancement on Centrifugal Pump Impellers

2017-03-28
2017-01-1607
This paper presents an experimental investigation of flow field instabilities in a centrifugal pump impeller at low flow rates. The measurements of pump hydraulic performance and flow field in the impeller passages were made with a hydraulic test rig. Analysis of Q-ΔP-η data and flow structures in the impeller passages were performed. In the present work, the effect of various flowrates on centrifugal pump impeller performance was analyzed based on pump measured parameters. The impeller’s geometry was modified, with positioning the curved spacer at the impeller suction side. This research investigates the effect of each inlet curved spacer model on pump performance improvement. The hydraulic performance and cavitation performance of the pump have been tested experimentally. The flow field inside a centrifugal pump is known to be fully turbulent, three dimensional and unsteady with recirculation flows and separation at its inlet and exit.
Technical Paper

Reducing the Acoustic Surface Power of a Cooling Fan Using the Mesh Morpher Optimizer

2017-03-28
2017-01-1610
Cooling fans have many applications in industrial and electronic fields that remove heat away from the system. The process of designing a new cooling fan with optimal performance and reduced acoustic sources can be fairly lengthy and expensive. The use of CFD with support of mesh morphing, along with the development of optimization techniques, can improve the acoustic’s performance of the fan model. This paper presents a new promising method which will support the design process of a new cooling fan with improved performance and less acoustic surface power generation. The CFD analysis is focused on reducing the acoustic surface power of a given cooling fan’s blade using the surface dipole acoustic power as the objective function, which leads to an optimized prototype design for a better performance. The Mesh Morpher Optimizer (MMO) in ANSYS Fluent is used in combination with a Simplex model of the broadband acoustic modeling.
Technical Paper

Terrain Truck: Control of Wheel Rotational Velocities and Tire Slippages

2011-09-13
2011-01-2157
The dynamics of an AWD vehicle is determined by the interactions between the vehicle's wheels and the tire contact surface. Understanding and controlling these interactions drives the vehicle mobility and energy efficiency. In this paper new issues related to tire slippage control are addressed. The paper analytically demonstrates that two tires on the same axle with the same rotational speeds can have different slippages when the normal reaction and inflation pressure vary due to motion conditions. Hence, a new method is proposed to control the rotational velocity of the wheels in a way that provides the same slippages of the tires by accounting for changes in the normal load and tire inflation pressure. This approach is especially beneficial for vehicles with individual (electric) wheel drives which can be individually controlled by introducing the proposed algorithm for controlling both the vehicle linear velocity and the tire slippages.
Technical Paper

A Numerical Study of the Effect of Longitudinal Vortex Generators on Heat Transfer Enhancement and Pressure Drop in a Rectangular Channel

2018-04-03
2018-01-0782
Longitudinal vortex generation is a common technique for enhancing heat transfer performance. It can be achieved by employing small flow manipulators, known as vortex generators (VGs), which are placed on the heat-transfer surface. The vortex generators can generate longitudinal vortices, which strongly disturb the flow structure, and have a significant influence on the velocity and temperature distributions, causing improved thermal transport. In this work, numerical simulations are conducted for a horizontal rectangular channel with and without a pair of longitudinal vortex generators. The vortex generators are fitted vertically on the bottom surface of the channel. The Computational Fluid Dynamics (CFD) analysis aims to acquire a better understanding of the flow structure and heat transfer mechanisms induced by longitudinal vortex generation. The simulation is performed using ANSYS Fluent, and three flow inlet velocities are considered: 1.38 m/s, 1.18 m/s, 0.98 m/s.
Technical Paper

Optimization of Modified Car Body Using Mesh Morphing Techniques in CFD

2016-04-05
2016-01-0009
Today's strict fuel economy requirement produces the need for the cars to have really optimized shapes among other characteristics as optimized cooling packages, reduced weight, to name a few. With the advances in automotive technology, tight global oil resources, lightweight automotive design process becomes a problem deserving important consideration. It is not however always clear how to modify the shape of the exterior of a car in order to minimize its aerodynamic resistance. Air motion is complex and operates differently at different weather conditions. Air motion around a vehicle has been studied quite exhaustively, but due to immense complex nature of air flow, which differs with different velocity, the nature of air, direction of flow et cetera, there is no complete study of aerodynamic analysis for a car. Something always can be done to further optimize the air flow around a car body.
Technical Paper

Design of an Aluminum Differential for a Racing Style Car

2000-03-06
2000-01-1156
The 1999 Lawrence Technological University (LTU) drive train consists of a sprocket and chain assembly that delivers the torque, developed by a 600cc Honda F3 engine, to the rear wheels. The torque is transferred through a limited-slip, torque sensing differential unit comprised of a gear set in a student designed housing. The 1999 differential is a second-generation aluminum housing. The idea of using aluminum was first attempted with the 1998 team who successfully completed and used aluminum despite much complexity and a few design flaws. Therefore, in the LTU Formula Team's continuing effort to optimize the design, a new less complex design was conceived to house the gear set. This innovative design reduces the number of housing components from three in 1998, to two in 1999.
Technical Paper

Numerical Design of a Low Mass Differential Housing

1999-03-01
1999-01-0741
Lawrence Technological University's 1998 SAE Formula car needed a high performance differential assembly. The performance requirements of a competitive SAE Formula car differential are as follows: Torque sensing capabilities Perfect reliability High strength Low mass Ability to withstand inertia and shock loading Small package Leak proof housing Ability to support numerous components With these requirements in mind an existing differential was selected with the capability for torque sensing. This differential lacked the desired low mass, support, internal drive splines, and proper gearing protection. The differential was re-engineered to remedy the deficiencies. The internal gearing from the selected differential was used in an improved casing. This casing and it's position in the car, reduce the number of side-specific parts required as well as improving the performance. The new design significantly reduces the size and mass of the assembly.
Technical Paper

Alternate Fuels: Not Only for Automobiles Propane Conversion of a Residential Lawnmower

1999-03-01
1999-01-0281
The purpose of this paper is to present the design and assembly of a working prototype of an alternate fueled lawnmower. A variety of alternate fuels have been suggested to help reduce air quality problems. The conversion process from gasoline to Propane will be explained. To determine fuel consumption and developed horsepower, engine simulations were performed. Stoichiometric analysis was performed to determine and compare the products of combustion between Propane and gasoline. The prototype Propane fueled lawnmower is able to operate efficiently and with less emissions as compared with a comparable gasoline fueled lawnmower. Engine output has been reduced by 27%. By burning Propane, a relatively clean fuel, engine emissions have been reduced by 60% as compared to gasoline.
X