Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

Modelling Diesel Engine Combustion and NOx Formation for Model Based Control and Simulation of Engine and Exhaust Aftertreatment Systems

2006-04-03
2006-01-0687
Emissions standards are becoming increasingly harder to reach without the use of exhaust aftertreatment systems such as Selective Catalytic Reduction and particulate filters. In order to make efficient use of these systems it is important to have accurate models of engine-out emissions. Such models are also useful for optimizing and controlling next-generation engines without aftertreatment using for example exhaust gas recirculation (EGR). Engines are getting more advanced using systems such as common rail fuel injection, variable geometry turbochargers (VGT) and EGR. With these new technologies and active control of the injection timing, more sophisticated models than simple stationary emission maps must be used to get adequate results. This paper is focused on the calculation of engine-out NOx and engine parameters such as cylinder pressure, temperature and gas flows.
X