Refine Your Search

Topic

Author

Search Results

Technical Paper

Suspension Components Calculation at Concept Stage to Evaluate the Ride and Handling Characteristics

2021-09-22
2021-26-0082
Vehicle handing and ride are the critical attributes for customers while buying new passenger vehicle. Hence it is very important to design suspension which meets customer expectations. Often tuning of suspension parameters is very difficult at later stage like wheelbase, vehicle center of Gravity and other suspension parameters like roll center heights etc. A parametric mathematical model is built to study the effect of these parameters of vehicle handling and ride attributes at concept stage. These models are used to calculate the suspension ride rates, spring rates and Anti roll bar diameters for meeting target vehicle ride and handling performance. The model also calculates natural frequency of suspension and vehicle for understanding pitch and roll behaviours.
Technical Paper

Virtual Simulation Method to Predict Farm Tractor Durability Load Cycles for Proving Ground Tests

2021-09-22
2021-26-0097
Agriculture machinery industries have always relied on conventional product development process such as laboratory tests, accelerated durability track tests and field tests. Now a days the competitive nature seen in industry concerns need to enhance product quality, time to market and development cost. Utilization of Computer Aided Engineering (CAE) methods not only provide solution but also could play key role in tractor development process. The objective is to assess the performance of virtual simulation model of mid segment farm tractor using Multibody System Model (MBS) for predicting the durability loads on virtual proving ground test tracks. Multibody simulation software MSC ADAMS is used to develop a virtual tractor model. Durability test tracks and simulation is carried out as per company testing standards. Data measurement is done using Wheel Force Transducer (WFT) to study front and rear spindle forces and moments to evaluate the virtual model performance.
Technical Paper

Improvement in the Brake Pedal Feel Comfort for Light Commercial Vehicles with Hydraulic Brake System

2021-09-22
2021-26-0515
Being a safety critical aggregate, every aspect of brake system is considered significant in vehicles operations. Along with optimum performance of brake system in terms of deceleration generation, brake pedal feel or brake feel is considered as one of the key elements while evaluating brake system of vehicles. There are many factors such as liner and drum condition, road surface, friction between linkages which impress the pedal feel. Out of these, in this paper we will be discussing the factors which influence the brake pedal feel in relation to the driver comfort and confidence building. Under optimum braking condition, brake operation must be completed with pedal effort not very less or not very high, brake pedal feel must be firm throughout the operation, in such a way that it will not create fatigue and at the same time it will give enough confidence to the driver while operating with acceptable travel.
Technical Paper

Systematic CAE Approach to Minimize Squeak Issues in a Vehicle Using Stick-Slip Test Parameters

2021-09-22
2021-26-0269
Due to recent advancements in interior noise level and the excessive use of different grade leathers and plastics in automotive interiors, squeak noise is one of the top customer complaints. Squeak is caused by friction induced vibration due to material incompatibility. To improve costumer perception, interior designs are following zero gap philosophy with little control on tolerances leading to squeak issues. Often manufacturers are left with costly passive treatments like coatings and felts. The best option is to select a compatible material with color and finish; however, this will reduce the design freedom. Material compatibility or stick-slip behavior can be analyzed with a tribology test stand. However, this test is performed on a specimen rather than actual geometry. There were instances, when a material pair was found incompatible when tested on a specimen, but never showed any issue in actual part and vice versa.
Technical Paper

Methodology Development for Open Station Tractor OEL Noise Assessment in the Virtual Environment

2021-09-22
2021-26-0310
There is a higher demand for quieter tractors in the agri-industry, as the continued exposure to noise levels have disastrous effects on operator’s health. To meet the world-wide regulatory norms and to be the global market leader, its mandatory to develop the comfortable tractor which meets homologation requirements and customer expectations. Typically, Operator Ear Level (OEL) noise has been evaluated in the test, after First Proto has been made. This approach increases cost associated with product development due to late changes of modifications and testing trails causing delay in time-to-market aspect. Hence, there is a need to develop the methodology for Predicting tractor OEL noise in virtual environment and propose changes at early stage of product development. At first, full vehicle comprising of skid, sheet metals and Intake-exhaust systems modelled has been built using Finite Element (FE) Preprocessor.
Technical Paper

Utilizing Weathering Effect to Understand Squeak Risk on Material Ageing

2021-09-22
2021-26-0280
Squeak and rattle concerns accounts for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises such as squeak and rattle are among the top 10 IQS concerns under any OEM nameplate. Customers perceive Squeak and rattle noises inside a cabin as a major negative indicator of vehicle build quality and durability. Door squeak and rattle issues not only affects customer satisfaction index, but also increase warranty cost to OEM significantly. Especially, issues related to door, irritate customers due to material incompatibilities. Squeaks are friction-induced noises generated by stick-slip phenomenon between interfacing surfaces. Several factors, such as material property, friction coefficient, relative velocity, temperature, and humidity, are involved in squeak noise causes.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

Accurate Steering System Modelling for Vehicle Handling and Steering Performance Prediction Using CAE

2021-09-22
2021-26-0403
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. Vehicle execution assessment is critical in the vehicle development process, requiring exact vehicle steering system models. The effect of steering system stiffness is vital for vehicle handling, stability, and steering performance studies. The overall steering stiffness is usually not modeled accurately. Usually, torsion bar stiffness alone is considered in the modeling. The modeling of overall steering stiffness along with torsion bar stiffness is studied in this paper. Another major contributing factor to steering performance is steering friction. The steering friction is also often not considered properly.
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Journal Article

A Systematic Approach for Load Cycle Generation Based on Real World Indian Drive Profile

2012-04-16
2012-01-0504
Within the last decade, due to increasing fuel prices, unstable political situation in major oil producing nations and global warming, there is an increased demand for fuel efficient and environment friendly vehicles. In this context, research is being concentrated in the field of advanced, greener powertrain configurations ranging from hybrids to EVs to fuel cells to HCCI engines. The efficacy for any of the above stated powertrain technology, lies in the optimum component specification. Component specification, operational reliability, & life prediction are highly dependent on the traffic condition, driving nature and vary from country to country. For developing countries, like India, where the traffic & drive pattern are dense & slow moving, there is a dire need for generating load cycle based on Real World Usage Profile (RWUP). The paper will propose a systematic approach to create load cycles in order to derive component specifications for the powertrain based on RWUP.
Journal Article

Analysis of Gear Geometry and Durability with Asymmetric Pressure Angle

2012-09-24
2012-01-1995
Gear design is one of the most critical components in the Mechanical Power Transmission industry. Among all the gear design parameters pressure angle is the most critical parameter, which mainly affects the load carrying capacity of the gear. Generally gears are designed with a symmetric pressure angle for drive and coast side. It means that both flank side of gear are able to have same load carrying capacity. In some applications, such as in wind turbines, the gears experience only uni-directional loading. In such cases, the geometry of the drive side need not be symmetric to the coast side. This allows for the design of gears with asymmetric teeth. Therefore new gear designs are needed because of the increasing performance requirements, such as high load capacity, high endurance, long life, and high speed. These gears provide flexibility to designers due to their non-standard design.
Technical Paper

Agricultural Tractor Engine Noise Prediction and Optimization through Test and Simulation Techniques

2021-09-22
2021-26-0277
Engine radiated noise has complex behavior as engine assembly consist different components, varying dynamic forces with wide range of speed. For open station tractor, engine noise is major contributor and hence needs to be optimized for regulatory norms as well customer comfort. The awareness about NVH comfort in domestic market as well as export market is increasing as customer have become more demanding. This forces OEM’s to put serious efforts to ensure the OEL noise / Engine noise is at acceptable levels. Identifying the optimized countermeasures to reduce the engine noise during the early design phase has a greater impact in reducing product development time and cost. This paper describes about a process that has been established for evaluating engine radiated noise and to improve the overall NVH performance.
Technical Paper

A Durability Analysis Case Study of SUV and MUV Using Measured Proving Ground Road Profiles

2010-04-12
2010-01-0495
With an increasing demand to reduce the product development time cycle from concept-to-vehicle, weight saving effort and less prototype initiative, CAE evaluation technique in the vehicle durability development must allow the computer simulation to reproduce the actual driving condition over a proving ground. This paper describes the case study to predict the durability performance of full vehicle using vehicle FE parts in ADAMS model. The objective is to carry out full vehicle simulation in actual road load condition using reduced full vehicle FE model, condensed with the ADAMS model. The measured acceleration is applied to the vehicle FE model and dynamic loads converted to equivalent static loads. The FE model solved in MSC.Nastran® with number of static load subcases converted from the measured proving ground road data. It also verifies the validity of the evaluation methodologies by simulation-to-experiment comparisons.
Technical Paper

Vehicle Interior Space Optimization through Occupant Seating Layout Apportioning

2017-07-10
2017-28-1923
Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
Technical Paper

Simulations Based Approach for Vehicle Idle NVH Optimization at Early Stage of Product Development

2011-05-17
2011-01-1591
The noise and vibration performance of diesel fueled automotives is critical for overall customer comfort. The stationary vehicle with engine running idle (Vehicle Idle) is a very common operating condition in city driving cycle. Hence it is most common comfort assessment criteria for diesel vehicles. Simulations and optimization of it in an early stage of product development cycle is priority for all OEMs. In vehicle idle condition, powertrain is the only major source of Noise and Vibrations. The key to First Time Right Idle NVH simulations and optimization remains being able to optimize all Transfer paths, from powertrain mounts to Driver Ear. This Paper talks about the approach established for simulations and optimization of powertrain forces entering in to frame by optimizing powertrain mount hard points and stiffness. Powertrain forces optimized through set process are further used to predict the vehicle passenger compartment noise and steering vibrations.
Technical Paper

Thermal Signature Investigation of an Electric Tractor for Military Applications

2013-11-27
2013-01-2757
Technology is one of the key determinants of the outcome in today's wars. Many targeting systems today use infra-red imaging as a means of acquiring targets when ambient light is insufficient for optical systems. Reducing thermal signatures offers an obvious tactical advantage in such a scenario. One way to reduce thermal emission of combat vehicles is to adopt highly efficient electrical power trains instead of internal combustion engines that tend to reject a sizeable amount of the input energy as heat. The tractor is one of the most versatile vehicles that are used in the theatre of combat for various operations such as haulage, clearing terrain, deploying bridges, digging trenches etc due to its excellent abilities in handling difficult terrain. A tractor powered by an all-electric power train was developed for civilian applications. The traction characteristics are identical to that of a conventional diesel powered tractor of comparable size.
Technical Paper

Diagnosis and Elimination of Disc Brake Groan in a Utility Vehicle

2014-04-01
2014-01-0043
Brake groan noise is resolved without any major change in the design of brake system and vehicle sub-system components in the development phase of a utility vehicle. The groan noise is observed during the end of the stopping of the vehicle under moderate braking. The concerned NVH issue is perceived as unacceptable noise in the passenger compartment. Groan induced vibration is subjectively felt on steering and seat frame. A typical process is established to successfully reproduce the groan which helped in precisely evaluating the effect of modifications proposed. The temperature range of the disc which has the highest probability to produce the groan noise is found out experimentally. The transfer path analysis is carried out to find the path contributions from suspension. Acoustic transfer functions from considered paths are measured with the suspension removed from vehicle.
Technical Paper

Strain Correlation Improvement in Fuel Tank

2013-04-08
2013-01-1207
In current competitive environment automobile industry is under heavy pressure to reduce time to market. First time right design is an important aspect to achieve the time and cost targets. CAE is a tool which helps designer to come up with first time right design. This also calls for high degree of confidence in CAE simulation results which can only be achieved by undertaking correlation exercises. Fuel tank is one of the important system in vehicle. At the validation stage leak test is carried out to find the leakage in the tank. This test is regulatory requirement which also ensures that the spot weld joineries have sufficient strength. Same test was mapped in CAE and high stress locations were identified. In test, strain gauging was done at the three selected locations. Paper highlights the test vs. CAE strain correlation and its finding. The effect of thinning is also discussed for the strain correlation of fuel tank.
Technical Paper

Overcoming Manufacturing Challenges in Mass Production of Vanadium Micro-Alloyed Steel Connecting Rods

2022-03-29
2022-01-0234
With recent advancements to create light weight engines and therefore, to design stronger and lighter connecting rods, automobile manufacturers have looked upon vanadium micro-alloyed steels as the material of choice. These materials have been developed keeping in mind the strength and manufacturing requirements of a connecting rod. Since, 36MnVS4 has been the most popular of this category, the same has been discussed in this paper. The transition of manufacturers from the traditional C70S6 grade to the new 36MnVS4 must be dealt with in-depth study and modification of processes to adapt to new properties of the latter. C70S6 is a high carbon grade with superior fracture split whereas 36MnVS4 is a medium carbon grade with superior strength and ductility owing to the presence of vanadium.
Technical Paper

Model-Based Simulation Approach to Reduce Jerk Issue in Power Shuttle Transmission (PST) Tractor

2022-08-30
2022-01-1119
Nowadays, tractors are frequently used with front-end loaders, dozers and backhoes to cater to various non-agricultural and construction application needs. These applications require frequent shifting of gears due to the constant need for a tractor's forward/reverse direction of motion. Hence, the tractors are fitted with a power shuttle transmission (PST) to cater this need. Power-shuttle transmission (PST) development is a design process that incorporates multiple disciplines such as mechanical, hydraulics, controls and electronics. This paper presents a simulation-based approach to model the power shuttle transmission of the tractor. Firstly, individual components of PST are modelled in detail and then integrated with the complete tractor model. For this, GT-Suite has been used as a simulation platform.
X