Refine Your Search

Topic

Author

Search Results

Viewing 1 to 19 of 19
Technical Paper

Development of Indian Digital Simulation Model for Vehicle Ergonomic Evaluations

2016-04-05
2016-01-1431
Virtual assessment of an occupant postural ergonomics has become an essential part of vehicle development process. To design vehicle for different market is one of the primary reason for manufacturers using digital tools to address the specific needs of the target market including cultural background, road and traffic conditions. RAMSIS is a widely used software for creating digital human models (DHM) of different target population which allows manufacturers to assess design with unique customer requirements in product design. Defining these requirements with RAMSIS human module helped development team to accurately define occupant targets such as occupant space, visibility and reachability etc. Occupant behavior and usage scenario are factors which are unique to target market and they influence the occupant posture and usage pattern inside the vehicle. This paper defines the methodology towards the development of Indian Digital Simulation model for vehicle ergonomic evaluations.
Technical Paper

Development of a Free Motion Headform Impactor

2011-01-19
2011-26-0105
The development of interior fittings of passenger car to minimize the injuries to the head of the occupants requires mandatory compliance to the regulations in Europe and USA. In European regulation ECE R21 and similarly in FMVSS 201 the test on the instrument panel area suffices. The FMVSS 201u requirements in USA require also a free motion headform to be impacted on additional areas of the A-Pillar trim, sun visors, grab handles, and seat belt upper anchorage points of the B-Pillar too. Free Motion Headform Impactors (FMHI) are costly equipment. The FMVSS 201u [1] test is not conducted by any test agency in India as yet. Paper deals with the development of the head form impactor to fire the headform at angular positions in the vehicle and the test results have enabled the development of the vehicle interiors to enhance the safety of vehicles in crash situations.
Technical Paper

Development of Common Rail Engine for LCV BS III and a Step Towards BS IV Emission Compliance

2011-01-19
2011-26-0032
This work discusses about the emission development of a 4 cylinder inline 3.3 liter CRDe to meet BS III emission norms applicable to 3.5 Ton and above category and upgradable to BS IV emission by suitable after treatment. This engine is developed from a 3.2l mechanical pump engine. During development the focus was on the usage of higher swept volume, selection of engine hardware like piston bowl, turbocharger, injectors and optimization of the injection parameters. A cost-effective solution for meeting the BS III norms in the LCV category without application of EGR and exhaust after treatment even though there is 15% increase of the power rating and 10% increase in Peak torque of the engine. Injection parameters like injection timing, injection quantity and pilot injection were optimized to meet the emission target.
Technical Paper

Experimental Investigation of CRDI Engine Combustion and Gear-Shift Optimization to Meet Stringent Tail-Pipe Emissions for SUV Application

2013-01-09
2013-26-0133
Brazil has implemented a new emission regulation for Light commercial vehicles named PROCONVE L6. This regulation follows Environmental Protection Act (EPA) driving cycle; FTP75. This cycle simulates an urban route of 12.07 km with frequent stops. The maximum speed is 91.2 km/h and the average speed is 31.5 km/h. The regulation has proposed that the gear shift pattern of the manual transmission vehicle can be varied according to the manufacturer's specification. This has lead to the strategy of optimizing gear shift pattern without compromising diesel combustion and engine-out emission with optimized exhaust-gas treatment-devices. The emission is demonstrated to Brazilan Authorities with good margins.
Technical Paper

Fuel Economy Measurement in Small Commercial Vehicles with Sub 1L BS6 Diesel Engines an Innovative Approach to Accurately Measure Fuel Economy

2022-03-29
2022-01-0575
In developing countries, the commercial vehicle industry is one of the key drivers for economic growth. The commercial vehicle industry in India is expected to reach 11,80,000 units by 2025 with a CAGR of 18% from CY 2020 to CY 2025 [1]. In the price sensitive segment of small commercial vehicles, it is imperative to incorporate accurate fuel economy measurement techniques during product development stage to deliver maximum value to the customer. In this approach, measuring the fuel consumption of small commercial vehicles in real world driving conditions in real time is one of the most critical aspects in engine calibration development and fine tuning. One of the challenges in measuring fuel consumption in sub 1 liter diesel engines is the very low fuel flow rate in the fuel feed line which keeps varying as per the driver demand.
Technical Paper

Agricultural Tractor Cabin Structure Design for Durability and Rollover Protective Structure Test

2015-01-14
2015-26-0163
A cabin on an agricultural tractor is meant to protect the operator from harsh environment, dust and provide an air conditioned space. As it is an enclosed space, cabin structure should be a crashworthiness structure and should not cause serious injury to operator in case of tractor roll over. There are International standard like OECD Code 4, SAE J2194 which regulates the crashworthiness of this protective structure. The roll-over protective structure (ROPS) is characterized by the provision of space for a clearance zone large enough to protect the operator in case of tractor overturn. None of the cabin parts should enter into the clearance zone for operator safety. In addition to meeting ROPS test criteria, the cabin structural strength should be optimized for the required tractor life. In this paper, simulation process has been established to design an agricultural tractor cabin structure and its mountings to meet the above requirements.
Technical Paper

A Supervisory Learning Based Two-Wheeler Drive Pattern

2015-04-14
2015-01-0221
The life of a two-wheeler and its parts depend much on its usage during its years of running. The quality of its parts determine the life and efficiency; however the handling of the two-wheeler also plays a major role in estimating it's life and other performance parameters. Hence, it is beneficial to have an efficient system which enhances the life of a two-wheeler and also gives better mileage. This paper constitutes an efficient drive pattern system which addresses the above. This system consists of two main parts: the data collection system and an Android-based mobile application which runs on a mobile phone. The data collection system collects data from various sensors on the vehicle and then the data is processed and sent to the mobile phone of the rider during the run time of the two-wheeler. The application uses this data to depict useful information like drive pattern and various indicators.
Technical Paper

Structural Evaluation Technique Based on RWUP for Scooter Using RLDA

2014-04-01
2014-01-0749
Scooter segment growth is tremendously increasing in India. The increased competition challenges automotive manufacturers to deliver the high quality and high reliable product to the market. Higher reliability involves increased durability testing which involves time and cost. Stress testing a part of durability is initially conducted on prototype vehicles for structural design validation and then later on production units to ensure its structural integrity. The obtained data from the tests can be used for future structural design improvements. Scooters with small tires, suspension limitations transfers more loads to structure, challenges engineers to design robust structure without compromising on weight much. It is necessary to look at Real World Usage Pattern (RWUP) and to create a stress life cycle block for simulation of accelerated testing, thereby optimizing the testing time and the development costs.
Technical Paper

Fluid Structure Interaction Simulation of Automotive Fuel Tank Sloshing using Nonlinear Fluid Properties

2015-01-14
2015-26-0240
In commercial vehicles which generally have large capacity fuel tank, sloshing of fuel and its effect on the tank structure is very important aspect during fuel tank design. Dynamic pressures exerted by the fuel on baffles, end plates and tank shell during sloshing can lead to structural failures and fuel leakage problems. Fluid structure interaction simulation of automotive fuel tank sloshing and its correlation with physical test is demonstrated in this study. During physical sloshing test of 350 L fuel tank, cracks were observed on center baffle and spot weld failures developed on fuel tank shell. Same sloshing test was simulated for one sloshing cycle using fluid structure interaction approach in LS Dyna explicit FE solver. Water was used instead of fuel. Mesh free Smoothed Particle Hydrodynamics (SPH) method is used to represent water as it requires less computational time as compared to Eulerian or ALE method.
Journal Article

A Telematics Enabled Analytics Approach for Determining Tractor Usage

2021-09-22
2021-26-0089
Tractor lease is an attractive proposition for farmers with small land holdings in India as initial investment required for purchasing a tractor is high [1]. The tractor is wet leased on a daily basis with the driver paid by the hour. Thus, there is a natural tendency by the driver to prolong the operation by taking frequent breaks adding to the overall input cost for the marginal farmer. Therefore, there is need to monitor these operations in real-time to ensure maximum utilization of tractors. The advent of connected and data driven technologies have positively disrupted several sectors including agriculture [2]. Vehicular and GPS (Global Positioning System) data from connected tractors powered by telematic devices can be effectively used for monitoring tractor’s health and position in real time using a mobile application. Moving beyond real-time monitoring, data obtained from connected tractors allow the computation of total field area and on-road distance covered during the day.
Technical Paper

Systematic Approach for Structural Optimization of Automotive Systems

2017-10-13
2017-01-5018
In today’s cost-competitive automotive market, use of finite element simulations and optimization tools has become crucial to deliver durable and reliable products. Simulation driven design is the key to reduce number of physical prototypes, design iterations, cost and time to market. However, simulation driven design optimization tools have struggled to find global acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing know-how decision making processes. In this study, systematic multi-phase approach for optimization driven design is presented. Approach includes three optimization phases. In first phase, topology optimization is performed on concept BIW design volume to identify critical load paths. Architectural inputs from topology are used to design base CAD.
Technical Paper

Virtual Design Validation of Innovative High Ground Clearance Tractor Kit

2024-01-16
2024-26-0066
An agricultural tractor is often modified for special farming applications such as horticulture where the standard design is not suitable or accessible. In such cases, farm equipment manufacturers are demanded frugal and cost effect Engineered farming solutions. One such design is the innovative High Ground Clearance Tractor (HGCT) kit offered to increase the Tractor height without damaging the crop during farming operations. In this paper, the author proposes a durability assessment method to evaluate the HGCT kit attachments to meet the durability criteria. Road load data acquisition is done to measure the acceleration and strain levels for various horticulture operations such as tillage, spraying and transportation. Actual operating conditions are simulated with the help of four poster durability setups inside the lab which helps to reduce the field testing for design iterations.
Technical Paper

Duty Cycle Based Fuel Consumption Calculation Using Simulation Methodology for Agricultural Tractor

2024-01-16
2024-26-0068
This project was undertaken with an objective to develop methodology by formulating set of procedures that would help in achieving the end goal. Once methodology is established, it paves way to optimize the end results more effectively which results in reduced lead time during product development. Methodology can either be based on pure experimental investigations or by simulations. Combination of mathematical and empirical approach is inherently followed in simulations, which helps in reducing the testing time and overall cost. Commercial vehicles (CV) have seen paradigm shift in the fuel consumption (FC) certification approaches, with an intention to align with 2016 Paris climate agreement. Use of simulation tool like VECTO for commercial vehicle FC certification has gained momentum in Europe. Overall experience gained in commercial vehicle FC simulation has motivated us to leverage the learnings for off-road applications like agricultural tractors.
Technical Paper

Effect of Lift Axle Suspension Design on Heavy Commercial Vehicle Handling Performance

2024-01-16
2024-26-0049
The cost of fuels used for automobile are rising in India on account of high global crude oil prices. The fuel cost constitutes major portion of total cost of operation for Heavy commercial vehicles. Hence, the trend is to carry the goods transport through higher payload capacity rigid/straight trucks that offer lower transportation cost per unit of goods transported. This is driving the design of multi-axle heavy trucks that have lift axles. In addition, improved network of highways and road infrastructure is leading to increase in average operating speed of heavy commercial vehicles. It has made increased focus on occupant as well as road safety while designing the heavy trucks. Hence, the analysis of lift axle suspension from the point of view of vehicle handling and stability is essential. There are two basic kinds of lift axle designs used in heavy commercial vehicles: self-steered lift axle having single tire on each side and non-steered lift axle with dual tires on each side.
Technical Paper

Structural Development and Improvement of SCR Assembly Design for Exhaust after Treatment System of a Construction Equipment off Highway Vehicle

2024-01-16
2024-26-0091
Construction equipment off highway vehicles are heavy industry vehicles that run on diesel engines. To meet the emission norms, these engines have the Exhaust After Treatment System (EATS) which includes two primary subassemblies, i.e., a Diesel Oxidation Catalyst (DOC) subassembly to reduce the HC and CO emissions and a Selective catalytic Reduction (SCR) subassembly to reduce NOx emissions. Because of the excessive vibrations in the engine and continuous heavy-duty usage of the Construction equipment, any failures in the EATS system leading to escape of exhaust gas is a statuary non-compliance. Hence, understanding the effect of engine vibrations and proposing a cost-effective solution is paramount in designing the EATS system including the SCR assembly. A field-testing failure of an SCR assembly has been taken in consideration for this study.
Technical Paper

Engine Modelling with Smart Online DoE

2024-01-16
2024-26-0338
The implementation of TREM/CEV 5 emission norms on farm equipment will bring in cost pressure due to the need for exhaust after treatment systems. This cost increase needs to be reduced by bringing in more efficient and effective processes to shorten the development phase and to provide better fuel efficiencies. In this work ETAS ASCMO Online DoE with Constraint Modelling (ODCM) was applied to execute smart online DoE on a new common rail diesel engine with EGR, whose exact bounds of operation was not available. A Global test plan with ASCMO Static was created without much focus on detailed constraints of engine operation, other than the full load curve. The parameters which were selected were Speed, Torque, Rail Pressure, Main Timing, EGR Valve Position, Pilot Separation and Quantity and Post Quantity and Separation. For these parameters, the safe operating bounds were not available. This ASCMO Static test plan is automated and executed on engine test cell with ETAS INCAFlow.
Technical Paper

Light Weighting of Tractor Components Using Virtual Optimization Technique

2024-01-16
2024-26-0390
Usually conventional iterative methods of optimization will consume more time to optimize the given design. Mostly, it becomes very difficult if multiple loads are acting on the structure contradicting each other. CAE based optimization technique becomes more useful in such cases to optimize the given design and achieve weight reduction. Optimization methods offers guidance to expedite solutions, resulting in a substantial reduction in product development time. Nowadays, optimization became inevitable part among the virtual validation processes of design in industries. A wide range of optimization methods have been effectively employed in the design of tractor components, especially mounting brackets, chassis and skid housing for the development of off-road vehicle. Based on the design stage, various optimization techniques were followed i.e. Topology, size and shape. Depending upon the available analysis time & Design freedom, determines the type of optimization approach to be used.
Technical Paper

An Innovative and Customer Centric Approach on Validating Telematics Based Fleet Optimization Feature for Small Commercial Vehicles

2024-01-16
2024-26-0378
Commercial transportation is the key pillar of any growing economy. Light and Small commercial vehicles are increasing every day to cater the logistics demand, but there is always a gap between customer’s actual and desired operational efficiency. This is because of lack of organized fleet and efficient fleet operation. The major requirement of fleet owners is timely delivery, high productivity, downtime reduction, real time tracking, etc., Automakers are now providing fleet management application in modern LCV & SCV to satisfy the fleet operator requirement. However, any feature malfunction, consignment mismatch, wrong notification, missed alerts, etc., can incur huge loss to fleet operator and disrupt the entire supply chain. Hence it is very critical to extensively validate the telematics features in fleet management application. This paper explains the approach for exhaustive validation strategy of fleet management applications (B2B) from end user perspective.
Technical Paper

Investigation of Synchronizer Ring Failure in a Commercial Vehicle Transmission

2024-01-16
2024-26-0383
The commercial vehicles market is dominated by manual transmission, due to lower ownership cost. Generally, commercial vehicles are used in large numbers by the fleet owners. The transmission endurance life is very important to a vehicle owner. On the other hand, driver fatigue can be reduced with a smooth gear change process. The gear change process in a manual transmission is carried out with the help of the synchronizer pack. The crucial function of a synchronizer pack in an automotive transmission is to match the speed of the target gear for smooth gear shifting. In a transmission, the loose and the weakest part is the synchronizer ring. The failure of the synchronizer affects smooth gear shifting and it also affects the endurance life of the transmission. The synchronizer ring can fail due to poor structural strength, synchronizer liner wear, synchronizer liner burning, etc.
X