Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Journal Article

Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

2015-06-15
2015-01-2156
The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested.
Journal Article

Test of SOI 555 Timer with High Temperature Packaging

2008-11-11
2008-01-2882
The thick oxide layer of silicon-on-insulator (SOI) devices significantly reduces the junction leakage current at elevated temperatures compared to similar Si devices, resulting in an elevated maximum operating temperature. The maximum operating temperature, specified by manufacturers, of commercial SOI devices/circuits with conventional packaging is usually 225°C. It is important to understand the performance and de-ratings of these SOI circuits at temperatures above 225°C without the temperature limit imposed by commercial packaging technology. This work tested a low frequency square-wave oscillator based on an SOI 555 Timer with a special high temperature ceramic packaging technology from room temperature to 375°C. The timer die was attached to a 96% aluminum oxide substrate with high temperature durable gold (Au) thick-film metallization, and interconnected with Au wires.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Development of the Compact Flash Evaporator System for Exploration

2007-07-09
2007-01-3204
This paper will discuss the status of the Compact Flash Evaporator System (CFES) development at NASA Glenn. Three alternative heat sink technologies are being developed under Thermal Control for Advanced Capabilities within the Exploration Technology Development Program. One of them is CFES, a spray cooling concept related to the current Space Shuttle Orbiter Flash Evaporator System (FES). In the CFES concept, water is sprayed on the outside of a flat plate heat exchanger, through which flows the vehicle's primary vehicle heat transfer fluid. The steam is then exhausted to space in an open-loop system. Design, fabrication and testing of the CFES at NASA's Glenn Research Center will be reported.
Technical Paper

Microwave Powered Gravitationally Independent Medical Grade Water Generation

2007-07-09
2007-01-3176
The on-demand production of Medical Grade Water (MGW) is a critical biomedical requirement for future long-duration exploration missions. Potentially, large volumes of MGW may be needed to treat burn victims, with lesser amounts required to reconstitute pharmacological agents for medical preparations and biological experiments, and to formulate parenteral fluids during medical treatment. Storage of MGW is an untenable means to meet this requirement, as are nominal MGW production methods, which use a complex set of processes to remove chemical contaminants, inactivate all microorganisms, and eliminate endotoxins, a toxin originating from gram-negative bacteria cell walls. An innovative microgravity compatible alternative, using a microwave-based MGW generator, is described in this paper. The MGW generator efficiently couples microwaves to a single-phase flowing stream, resulting in super-autoclave temperatures.
Technical Paper

Review of Role of Icing Feathers in Ice Accretion Formation

2007-09-24
2007-01-3294
This paper presents a review of our current experimental and theoretical understanding of icing feathers and the role that they play in the formation of ice accretions. It covers the following areas: a short review of past research work related to icing feathers; a discussion of the physical characteristics and terminology used in describing icing feathers; the presence of feathers on ice accretions formed in unswept airfoils, especially at SLD conditions; the role that icing feathers play in the formation of ice accretion shapes on swept wings; the formation of icing feathers from roughness elements; theoretical considerations regarding feather formation, feather interaction to form complex icing structures, the role of film dynamics in the formation of roughness elements and the formation of feathers. Hypotheses related to feather formation and feather growth are discussed.
Technical Paper

Sub-Critical Liquid Oxygen (Lox) Storage for Exploration Life Support Systems

2009-07-12
2009-01-2417
Oxygen storage and delivery systems for advanced Lunar Exploration Missions are substantially different than those of the International Space Station (ISS) or Apollo missions. The oxygen must be stored without venting for durations of 180 to 210 days prior to use and then used to supply both the steady, low pressure oxygen for the crew, and the higher-pressure oxygen for the extra-vehicular mobility unit. The baseline design is a high pressure gaseous oxygen storage system. Alternate technologies that may offer substantial advantages in terms of the equivalent system mass over the baseline design are being currently evaluated. This study examines both the supercritical and subcritical liquid oxygen storage options, including one with active cooling using a cryocooler. It is found that an actively cooled sub-critical storage system offered the lowest mass system that could satisfy the requirements.
Technical Paper

Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

2009-07-12
2009-01-2473
A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar®, Vectran®, Orthofabric, and Tyvek®) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran®) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar® and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek®, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek®. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran® and Kevlar® suffering considerably more extensive filament breakage.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Smoke Particle Sizes in Low-Gravity and Implications for Spacecraft Smoke Detector Design

2009-07-12
2009-01-2468
This paper presents results from a smoke detection experiment entitled Smoke Aerosol Measurement Experiment (SAME) which was conducted in the Microgravity Science Glovebox on the International Space Station (ISS) during Expedition 15. Five different materials representative of those found in spacecraft were pyrolyzed at temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow conditions. The sample materials were Teflon®, Kapton®, cellulose, silicone rubber and dibutylphthalate. The transport time from the smoke source to the detector was simulated by holding the smoke in an aging chamber for times ranging from 10 to1800 seconds. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis.
Technical Paper

SLD Research in the UK

2003-06-16
2003-01-2128
This paper reviews work conducted in the UK aimed at developing validated methods to simulate ice accretion formed in super-cooled large droplet (SLD) icing conditions. To date, QinetiQ has completed one theoretical and three experimental programmes of work. Two further studies are currently in progress within UK universities. This paper provides results from the third test conducted by QinetiQ and NASA in the GKN Aerospace Composite Technologies Icing Research Wind Tunnel, Luton UK, to measure the mass loss through droplet splash during an SLD encounter. A description of the test procedures and the results obtained are provided. Future work on SLD methods development in progress in the UK is then briefly outlined.
Technical Paper

An Experimental Investigation of SLD Impingement on Airfoils and Simulated Ice Shapes

2003-06-16
2003-01-2129
This paper presents experimental methods for investigating large droplet impingement dynamics and for obtaining small and large water droplet impingement data. Droplet impingement visualization experiments conducted in the Goodrich Icing Wind Tunnel with a 21-in chord NACA 0012 airfoil demonstrated considerable droplet splashing during impingement. The tests were performed for speeds in the range 50 to 175 mph and with cloud median volumetric diameters in the range of 11 to 270 microns. Extensive large droplet impingement tests were conducted at the NASA Glenn Icing Research Tunnel (IRT). Impingement data were obtained for a range of airfoil sections including three 36-inch chord airfoils (MS(1)-0317, GLC-305, and NACA 652-415), a 57-inch chord Twin Otter horizontal tail section and 22.5-minute and 45-minute LEWICE glaze ice shapes for the Twin Otter tail section. Small droplet impingement tests were also conducted for selected test models.
Technical Paper

Update On SLD Engineering Tools Development

2003-06-16
2003-01-2127
The airworthiness authorities (FAA, JAA, Transport Canada) will be releasing a draft rule in the 2006 timeframe concerning the operation of aircraft in a Supercooled Large Droplet (SLD) environment aloft. The draft rule will require aircraft manufacturers to demonstrate that their aircraft can operate safely in an SLD environment for a period of time to facilitate a safe exit from the condition. It is anticipated that aircraft manufacturers will require a capability to demonstrate compliance with this rule via experimental means (icing tunnels or tankers) and by analytical means (ice prediction codes). Since existing icing research facilities and analytical codes were not developed to account for SLD conditions, current engineering tools are not adequate to support compliance activities in SLD conditions. Therefore, existing capabilities need to be augmented to include SLD conditions.
Technical Paper

Iced Aircraft Flight Data for Flight Simulator Validation

2002-04-16
2002-01-1528
NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice.
Technical Paper

Simulation Model Development for Icing Effects Flight Training

2002-04-16
2002-01-1527
A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.
Technical Paper

An Overview of NASA Engine Ice-Crystal Icing Research

2011-06-13
2011-38-0017
Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA's Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA's engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA's research.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

2006-07-17
2006-01-2132
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA's Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450°C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
Technical Paper

Durable Coating Technology for Lunar Dust Protection and Mitigation

2006-07-17
2006-01-2205
Special coatings are being developed and tested to contend with the effects of dust on the lunar surface. These coatings will have wide applicability ranging from prevention of dust buildup on solar arrays and radiator surfaces to protection of EVA space suit fabrics and visors. They will be required to be durable and functional based on application. We have started preparing abrasion-resistant transparent conductive coatings ∼40 nm thick were formed by co-deposition of titanium dioxide (TiO2) and titanium (Ti) on room-temperature glass and polycarbonate substrates using two RF magnetron sputtering sources. By adjusting Ti content, we obtained sheet resistivities in the range 104-1010 ohms/square. We have also started conducting a series of environmental tests that simulate the exposure of coated samples to dust under relevant conditions, beginning with abrasion tests using regolith simulant materials.
X