Refine Your Search

Topic

Author

Affiliation

Search Results

Video

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-06-18
This paper forms the third of a series and presents results obtained during the testing and development phase of a dedicated range extender engine designed for use in a compact class vehicle. The first paper in this series used real world drive logs to identify usage patterns of such vehicles and a driveline model was used to determine the power output requirements of a range extender engine for this application. The second paper presented the results of a design study. Key attributes for the engine were identified, these being minimum package volume, low weight, low cost, and good NVH. A description of the selection process for identifying the appropriate engine technology to satisfy these attributes was given and the resulting design highlights were described. The paper concluded with a presentation of the resulting specification and design highlights of the engine. This paper will present the resulting engine performance characteristics.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Journal Article

Performance and Emissions of Diesel and Alternative Diesel Fuels in a Heavy-duty Industry-Standard Older Engine

2010-10-25
2010-01-2281
Conventional diesel fuel has been in the market for decades and used successfully to run diesel engines of all sizes in many applications. In order to reduce emissions and to foster energy source diversity, new fuels such as alternative and renewable, as well as new fuel formulations have entered the market. These include biodiesel, gas-to-liquid, and alternative formulations by states such as California. Performance variations in fuel economy, emissions, and compatibility for these fuels have been evaluated and debated. In some cases contradictory views have surfaced. “Sustainable”, “Renewable”, and “Clean” designations have been interchanged. Adding to the confusion, results from one fuel in one type of engine such as an older heavy-duty engine, is at times compared to that of another type such as a modern light-duty. This study was an attempt to compare the performance of several fuels in an identical environment, using the same engine, for direct comparison.
Journal Article

Effects of EGR Dilution and Fuels on Spark Plug Temperatures in Gasoline Engines

2013-04-08
2013-01-1632
The addition of exhaust gas recirculation (EGR) has demonstrated the potential to significantly improve engine efficiency by allowing high CR operation due to a reduction in knock tendency, heat transfer, and pumping losses. In addition, EGR also reduces the engine-out emission of nitrogen oxides, particulates, and carbon monoxide while further improving efficiency at stoichiometric air/fuel ratios. However, improvements in efficiency through enhanced combustion phasing at high compression ratios can result in a significant increase in cylinder pressure. As cylinder pressure and temperature are both important parameters for estimating the durability requirements of the engine - in effect specifying the material and engineering required for the head and block - the impact of EGR on surface temperatures, when combined with the cylinder pressure data, will provide an important understanding of the design requirements for future cylinder heads.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Journal Article

Medium-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2769
This paper presents the results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to two medium-duty vocational vehicles. Simulation modeling was first conducted on one diesel and two gasoline medium-duty engines. Engine technologies were then applied to the baseline engines. The resulting fuel consumption maps were run over a range of vehicle duty cycles and payloads in the vehicle simulation model. Results were reported for both individual engine technologies and combinations or packages of technologies. Two vehicles, a Kenworth T270 box delivery truck and a Ford F-650 tow truck were evaluated. Once the baseline vehicle models were developed, vehicle technologies were added. As with the medium-duty engines, vehicle simulation results were reported for both individual technologies and for combinations. Vehicle technologies were evaluated only with the baseline 2019 diesel medium-duty engine.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - Thermal Management Strategies

2017-03-28
2017-01-0954
The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Journal Article

HMMWV Axle Testing Methodology to Determine Efficiency Improvements with Superfinished Hypoids

2013-04-08
2013-01-0605
A dynamometer test methodology was developed for evaluation of HMMWV axle efficiency with hypoid gearsets, comparing those having various degrees of superfinish versus new production axles as well as used axles removed at depot maintenance. To ensure real-world applicability, a HMMWV variant vehicle model was created and simulated over a peacetime vehicle duty cycle, which was developed to represent a mission scenario. In addition, tractive effort calculations were then used to determine the maximum input torques. The drive cycle developed above was modified into two different profiles having varying degrees of torque variability to determine if the degree of variability would have a significant influence on efficiency in the transient dynamometer tests. Additionally, steady state efficiency performance is measured at four input pinion speeds from 700-2500 rpm, five input torques from 50 - 400 N⋅m, and two sump temperatures, 80°C and 110°C.
Technical Paper

Heat Transfer Enhancement through Advanced Casting Technologies

2020-04-14
2020-01-1162
There is growing interest in additive manufacturing technologies for prototype if not serial production of complex internal combustion engine components such as cylinder heads and pistons. In support of this general interest the authors undertook an experimental bench test to evaluate opportunities for cooling jacket improvement through geometries made achievable with additive manufacturing. A bench test rig was constructed using electrical heating elements and careful measurement to quantify the impact of various designs in terms of heat flux rate and convective heat transfer coefficients. Five designs were compared to a baseline - a castable rectangular passage. With each design the heat transfer coefficients and heat flux rates were measured at varying heat inputs, flow rates and pressure drops. Four of the five alternative geometries outperformed the baseline case by significant margins.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

Modeling NOx Emissions from Lean-Burn Natural Gas Engines

1998-05-04
981389
A zero-dimensional cycle simulation model coupled with a chemical equilibrium model and a two-zone combustion model has been extended to predict nitric oxide formation and emissions from spark-ignited, lean-burn natural gas engines. It is demonstrated that using the extended Zeldovich mechanism alone, the NOx emissions from an 8.1-liter, 6-cylinder, natural gas engine were significantly under predicted. However, by combining the predicted NOx formation from both the extended Zeldovich thermal NO and the Fenimore prompt NO mechanisms, the NOx emissions were predicted with fair accuracy over a range of engine powers and lean-burn equivalence ratios. The effect of injection timing on NOx emissions was under predicted. Humidity effects on NOx formation were slightly under predicted in another engine, a 6.8-liter, 6-cylinder, natural gas engine. Engine power was well predicted in both engines, which is a prerequisite to accurate NOx predictions.
Technical Paper

Fuel Economy Benefits of Electric and Hydraulic Off Engine Accessories

2007-04-16
2007-01-0268
This paper will describe the fuel economy benefits that can be obtained when traditionally engine-driven accessories such as water pumps, oil pumps, power steering pumps, radiator cooling fans and air conditioning compressors are decoupled from the engine and are remotely driven and controlled. Simulation results for different vehicle configurations such as heavy duty trucks operated over urban and highway driving cycles and light duty vehicles such as mini vans will be presented. These results will quantify the heavy dependence of fuel economy benefits associated with different types of driving cycles.
Technical Paper

Intentional Failure of a 5000 psig Hydrogen Cylinder Installed in an SUV Without Standard Required Safety Devices

2007-04-16
2007-01-0431
A vehicle's gasoline fuel tank was removed and replaced with a 5,000-psig, Type-III, aluminum-lined hydrogen cylinder. High-pressure cylinders are typically installed with a thermally-activated pressure relief device (PRD) designed to safely vent the contents of the cylinder in the event of accidental exposure to fire. The objective of this research was to assess the results of a catastrophic failure in the event that a PRD were ineffective. Therefore, no PRD was installed on the vehicle to ensure cylinder failure would occur. The cylinder was pressurized and exposed to a propane bonfire in order to simulate the occurrence of a gasoline pool fire on the underside of the vehicle. Measurements included temperature and carbon monoxide concentration inside the passenger compartment of the vehicle to evaluate tenability. Measurements on the exterior of the vehicle included blast wave pressures. Documentation included standard, infrared, and high-speed video.
Technical Paper

Aging of Zeolite Based Automotive Hydrocarbon Traps

2007-04-16
2007-01-1058
This paper analyzes the aging of zeolite based hydrocarbon traps to guide development of diagnostic algorithms. Previous research has shown the water adsorption ability of zeolite ages along with the hydrocarbon adsorption ability, and this leads to a possible diagnostic algorithm: the water concentration in the exhaust can be measured and related to aging. In the present research, engine experiments demonstrate that temperature measurements are also related to aging. To examine the relationship between temperature-based and moisture-based diagnostic algorithms, a transient, nonlinear heat and mass transfer model of the exhaust during cold-start is developed. Despite some idealizations, the model replicates the qualitative behavior of the exhaust system. A series of parametric studies reveals the sensitivity of the system response to aging and various noise factors.
Technical Paper

Development and Validation of a Snowmobile Engine Emission Test Procedure

1998-09-14
982017
An appropriate test procedure, based on a duty cycle representative of real in-use operation, is an essential tool for characterizing engine emissions. A study has been performed to develop and validate a snowmobile engine test procedure for measurement of exhaust emissions. Real-time operating data collected from four instrumented snowmobiles were combined into a composite database for analysis and formulation of a snowmobile engine duty cycle. One snowmobile from each of four manufacturers (Arctic Cat, Polaris, Ski-Doo, and Yamaha) was included in the data collection process. Snowmobiles were driven over various on- and off-trail segments representing five driving styles: aggressive (trail), moderate (trail), double (trail with operator and one passenger), freestyle (off trail), and lake driving. Statistical analysis of this database was performed, and a five-mode steady-state snowmobile engine duty cycle was developed.
Technical Paper

The Port Fuel Injector Deposit Test - A Statistical Review

1998-10-19
982713
The Port Fuel Injector (PFI) Deposit Test is a performance-based test procedure developed by the Coordinating Research Council and adopted by state and federal regulatory agencies for fuel qualification in the United States. To date, Southwest Research Institute (SwRI) has performed over 375 PFI tests between 1991 and 1998 for various clients. This paper details the analyses of these tests. Of the 375 tests, 199 were performed as keep-clean tests and 176 were performed as clean-up tests. The following areas of interest are discussed in this paper: Keep-clean versus clean-up test procedures Linearity of deposit formation Injector position effects as related to fouling Dirtyup / cleanup phenomena Seasonal effects This paper draws the conclusion that it is easier to keep new injectors from forming deposits than it is to clean up previously formed deposits. It was found that injector deposit formation is generally non-linear.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

Mild Regenerative Braking to Enhance Fuel Economy via Lowered Engine Load Due to Alternator

2008-10-12
2008-01-2560
Brake energy recovery is one of the key components in today's hybrid vehicles that allows for increased fuel economy. Typically, major engineering changes are required in the drivetrain to achieve these gains. The objective of this paper is to present a concept of capturing brake energy in a mild hybrid approach without any major modifications to the drivetrain or other vehicular systems. With fuel costs rising, the additional component cost incurred in the presented concept may be recovered quickly. In today's vehicles, alternators supply the electrical power for the engine and vehicle accessories whenever the engine is running. As vehicle electrical demands increase, this load is an ever-increasing part of the engine's output, negatively impacting fuel economy. By using a regenerative device (alternator) on the drive shaft (or any other part of the power train), electrical energy can be captured during braking.
Technical Paper

Analysis of a SuperTurbocharged Downsized Engine Using 1-D CFD Simulation

2010-04-12
2010-01-1231
The VanDyne SuperTurbocharger (SuperTurbo) is a turbocharger with an integral Continuously Variable Transmission (CVT). By changing the gear ratio of the CVT, the SuperTurbo is able to either pull power from the crankshaft to provide a supercharging function, or to function as a turbo-compounder, where energy is taken from the turbine and given to the crankshaft. The SuperTurbo's supercharger function enhances the transient response of a downsized and turbocharged engine, and the turbo-compounding function offers the opportunity to extract the available exhaust energy from the turbine rather than opening a waste gate. Using 1-D simulation, it was shown that a 2.0-liter L4 could exceed the torque curve of a 3.2L V6 using a SuperTurbo, and meet the torque curve of a 4.2-liter V8 with a SuperTurbo and a fresh-air bypass configuration. In each case, the part-load efficiency while using the SuperTurbo was better than the baseline engine.
Technical Paper

Vektron® 6913 Gasoline Additive NOX Evaluation Fleet Test Program

2001-05-07
2001-01-1997
A 28-vehicle fleet test was executed to verify and quantify the NOX emissions reductions achieved through the use of Infineum's Vektron 6913 gasoline additive. The fleet composition and experimental design were finalized in collaborative discussions with US Environmental Protection Agency (EPA) Office of Transportation & Air Quality (OTAQ) and consultation / advice from several major US automotive manufacturers. The test was conducted over a period of five months at Southwest Research Institute. Statistical analysis of the emissions data indicated a 10% average fleet reduction in NOX emissions without any negative impact on other criteria pollutants (CO, HC) or fuel economy.
X