Refine Your Search

Topic

Search Results

Technical Paper

State-of-the-Art and Development Trends of Assembly Technologies for Proton Exchange Membrane Fuel Cell Stack: A Review

2020-04-14
2020-01-1175
Proton Exchange Membrane Fuel Cell (PEMFC) uses hydrogen and oxygen for fuel, the whole energy conversion process almost has no negative impact on the environment. The PEM fuel cell stack with the advantages of low-operating temperature, high current density and fast start-up ability is considered to be the next generation of new electric vehicle power. However, due to the limited current output, it is difficult for a single cell to meet the practical application requirements. The actual fuel cell stack is formed by many single cells assembled together. The assembly process is often related to load transfer, material transfer, energy exchange, multi-phase flow, electrochemical reaction and other factors. The performance of MEA (Membrane Electrode Assembly), sealing gaskets and other components will change during the assembly process, which makes the fuel cell stack assembly process more complex.
Journal Article

Uncertainty Optimization of Thin-walled Beam Crashworthiness Based on Approximate Model with Step Encryption Technology

2016-04-05
2016-01-0404
Crashworthiness is one of the most important performances of vehicles, and the front rails are the main crash energy absorption parts during the frontal crashing process. In this paper, the front rail was simplified to a thin-walled beam with a cross section of single-hat which was made of steel and aluminum. And the two boards of it were connected by riveting without rivets. In order to optimize its crashworthiness, the thickness (t), radius (R) and the rivet spacing (d) were selected as three design variables, and its specific energy absorption was the objective while the average impact force was the constraint. Considering the error of manufacturing and measurements, the parameters σs and Et of the steel were selected as the uncertainty variables to improve the design reliability. The algorithm IP-GA and the approximate model-RBF (Radial Basis Function) were applied in this nonlinear uncertainty optimization.
Technical Paper

Joint Calibration of Dual LiDARs and Camera Using a Circular Chessboard

2020-04-14
2020-01-0098
Environmental perception is a crucial subsystem in autonomous vehicles. In order to build safe and efficient traffic transportation, several researches have been proposed to build accurate, robust and real-time perception systems. Camera and LiDAR are widely equipped on autonomous self-driving cars and developed with many algorithms in recent years. The fusion system of camera and LiDAR provides state-of the-art methods for environmental perception due to the defects of single vehicular sensor. Extrinsic parameter calibration is able to align the coordinate systems of sensors and has been drawing enormous attention. However, differ from spatial alignment of two sensors’ data, joint calibration of multi-sensors (more than two sensors) should balance the degree of alignment between each two sensors.
Technical Paper

Impact Simulation and Structural Optimization of a Vehicle CFRP Engine Hood in terms of Pedestrian Safety

2020-04-14
2020-01-0626
With the rapidly developing automotive industry and stricter environmental protection laws and regulations, lightweight materials, advanced manufacturing processes and structural optimization methods are widely used in body design. Therefore, in order to evaluate and improve the pedestrian protection during a collision, this paper presents an impact simulation modeling and structural optimization method for a sport utility vehicle engine hood made of carbon fiber reinforced plastic (CFRP). Head injury criterion (HIC) was used to evaluate the performance of the hood in this regard. The inner panel and the outer panel of CFRP hood were discretized by shell elements in LS_DYNA. The Mat54-55 card was used to define the mechanical properties of the CFRP hood. In order to reduce the computational costs, just the parts contacted with the hood were modeled. The simulations were done in the prescribed 30 impact points.
Technical Paper

System Evaluation Method for Two Planetary Gears Hybrid Powertrain under Gray Relational Analysis Based on Fuzzy AHP and Entropy Weight Method

2020-04-14
2020-01-0430
Millions of configurations of power-split hybrid powertrain can be generated due to variation in number of planetary-gear sets (PG), difference in number, type and installation location of shift actuators (clutches or brakes), and difference in connection positions of power components. Considering the large number of configurations, complex structures and control modes, it is vital to construct an appropriate multi-index system evaluation method, which directly affects the requirement fulfillment, the time and cost of 2-PG system configuration design. Considering one-sidedness (dynamics and economic performance), simplicity (linear combination of indicators) and subjectivity (relying on expert experience) of previous system evaluation method of 2-PG system design, a more systematic evaluation method is proposed in this paper. The proposed evaluation system consists of five aspects, involving dynamic, economy, comfort, reliability and cost, and more than 20 indexes.
Technical Paper

Simulation and Parametric Analysis of Battery Thermal Management System Using Phase Change Material

2020-04-14
2020-01-0866
The thermophysical parameters and amount of composite phase change materials (PCMs) have decisive influence on the thermal control effects of thermal management systems (TMSs). At the same time, the various thermophysical parameters of the composite PCM are interrelated. For example, increasing the thermal conductivity is bound to mean a decrease in the latent heat of phase change, so a balance needs to be achieved between these parameters. In this paper, a prismatic LiFePO4 battery cell cooled by composite PCM is comprehensively analyzed by changing the phase change temperature, thermal conductivity and amount of composite PCM. The influence of the composite PCM parameters on the cooling and temperature homogenization effect of the TMS is analyzed. which can give useful guide to the preparation of composite PCMs and design of the heat transfer enhancement methods for TMSs.
Technical Paper

Optimization of the Finite Hybrid Piezoelectric Phononic Crystal Beam for the Low-Frequency Vibration Attenuation

2020-04-14
2020-01-0913
This paper presents a theoretical study of a finite hybrid piezoelectric phononic crystal (PC) beam with shunting circuits. The vibration transmissibility method (TM) is developed for the finite system. The uniform and non-uniform configurations of the resonators, piezoelectric patches and shunting circuits are respectively considered. The properties of the vibration attenuation of the hybrid PC beam undergoing bending vibration are investigated and quantified. It is shown that the proper relaxation of the periodicity of the PC is conducive to forming a broad vibration attenuation region. The hybrid piezoelectric PC combines the purely mechanical PC with the piezoelectric PC and provides more tunable mechanisms for the target band-gap. Taking the structural and circuit parameters into account, the design of experiments (DOE) method and the multi-objective genetic optimization method are employed to improve the vibration attenuation and meet the lightweight demand of the attachments.
Journal Article

Investigation on Dynamic Recovery Behavior of Boron Steel 22MnB5 under Austenite State at Elevated Temperatures

2011-04-12
2011-01-1057
Hot forming process of ultrahigh strength boron steel 22MnB5 is widely applied in vehicle industry. It is one of the most effective approaches for vehicle light weighting. Dynamic recovery is the major softening mechanism of the boron steel under austenite state at elevated temperatures. Deformation mechanism of the boron steel can be revealed by investigation on the behavior of dynamic recovery, which could also improve the accuracy of forming simulations for hot stamping. Uniaxial tensile experiments of the boron steel are carried out on the thermo-mechanical simulator Gleeble3800 at elevated temperatures. The true stress-strain curves and the relations between the work hardening rate and flow stress are obtained in different deformation conditions. The work hardening rate decreases linearly with increasing the flow stress.
Technical Paper

The Study on Fatigue Test of Cab Assembly Based on 4-Channel Road Simulation Bench

2017-03-28
2017-01-0328
The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
Technical Paper

Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review

2016-04-05
2016-01-1204
As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
Technical Paper

Design Aspects of a Novel Active and Energy Regenerative Suspension

2016-04-05
2016-01-1547
Traditional active suspension which is equipped with hydraulic actuator or pneumatic actuator features slow response and high power consumption. However, electromagnetic actuated active suspension benefits quick response and energy harvesting from vibration at the same time. To design a novel active and energy regenerative suspension (AERS) utilizing electromagnetic actuator, this paper investigates the benchmark cars available on the market and summaries the suspension features. Basing on the investigation, a design reference for AERS design is proposed. To determine the parameters of the actuator, a principle is proposed and the parameters of the actuator are designed accordingly. Compared the linear type and rotary type Permanent Magnet Synchronous Motor (PMSM), the rotary type is selected to construct the actuator of the AERS. Basing on the suspension structure of the design reference model and utilizing rotary type PMSM, a novel AERS structure is proposed.
Journal Article

Effect of Geometric Parameters on Folding of Thin-Walled Steel Tube under Axial Compression

2022-03-29
2022-01-0264
This study investigated the plastic deformation behavior of 304 stainless steel thin-walled tubes under axial compression by means of numerical calculation and theoretical analysis. It was found that the plastic deformation length of thin-walled tube determined the formability of folds and the work done in the whole axial compression process. To reveal the relation between the range of plastic deformation length and tube geometry parameters, regression equations were established using the quadratic regression orthogonal design method. Experiments were conducted to validate the equations. The process windows for forming a single fold and tube joining at ends had been printed ultimately. The results showed that the regression equations can accurately predict the range of plastic deformation length for forming a single fold.
Technical Paper

Concurrent Optimization of Ply Orientation and Thickness for Carbon Fiber Reinforced Plastic (CFRP) Laminated Engine Hood

2018-04-03
2018-01-1121
Carbon fiber reinforced plastic (CFRP) composites have gained particular interests due to their high specific modulus, high strength, lightweight and resistance to environment. In the automotive industry, numerous studies have been ongoing to replace the metal components with CFRP for the purpose of weight saving. One of the significant benefits of CFRP laminates is the ability of tailoring fiber orientation and ply thickness to meet the acceptable level of structural performance with little waste of material capability. This study focused on the concurrent optimization of ply orientation and thickness for CFRP laminated engine hood, which was based on the gradient-based discrete material and thickness optimization (DMTO) method. Two manufactural constraints, namely contiguity and intermediate void constraints, were taken into account in the optimization problem to reduce the potential risk of cracking matrix of CFRP.
Technical Paper

Effect of Clamping Load on the Performance and Contact Pressure of PEMFC Stack

2018-04-03
2018-01-1310
In the assembling process of proton exchange membrane fuel cell (PEMFC) stack, the clamping load is known to have direct effect on the contact pressure of interfaces. Compression on the membrane electrode assembly (MEA) results in change in gas diffusion layer (GDL), porosity and electrical resistance, thus affecting the performance, durability and reliability of the PEMFC stack. In this paper, the relation between clamping load and performance of PEMFC stack was obtained by experimental study, and the influence of clamping load on the contact pressure of MEAs was analyzed by finite element analysis. The performance test rig was established and the approach of polarization curve testing was introduced. Both the effect of magnitude and distribution of the bolt torques on the performance were taken into account. The finite element model was adopted to figure out the magnitude and uniformity of contact pressure of MEAs, which provides a new angle to understand the experimental results.
Technical Paper

Driver Risk Perception Model under Critical Cut-In Scenarios

2018-08-07
2018-01-1626
In China Cut-in scenarios are quite common on both highway and urban road with heavy traffic. They have a potential risk of rear-end collision. When facing a cutting in vehicle, driver tends to brake in most case to reduce collision risk. The timing and dynamic characteristics of brake maneuver are indicators of driver subjective risk perception. Time to collision (TTC) and Time Headway (THW) demonstrate objective risk. This paper aims at building a model quantitatively revealing the relationship between drivers’ subjective risk perception and objective risk. A total of 66 valid critical Cut-in cases was extracted from China-FOT, which has a travel distance of about 130 thousand miles. It is found that under Cut-in scenarios, driver tended to brake when the cutting in vehicle right crossing line. This time point was defined as initial brake time. Brake strength and brake speed were taken to describe brake maneuver.
Technical Paper

The Research Progress of Dynamic Photo-Elastic Method

2014-04-01
2014-01-0829
With the rapid development of computing technology, high-speed photography system and image processing recently, in order to meet growing dynamic mechanical engineering problems demand, a brief description of advances in recent research which solved some key problems of dynamic photo-elastic method will be given, including:(1) New digital dynamic photo-elastic instrument was developed. Multi-spark discharge light source was replaced by laser light source which was a high intensity light source continuous and real-time. Multiple cameras shooting system was replaced by high-speed photography system. The whole system device was controlled by software. The image optimization collection was realized and a strong guarantee was provided for digital image processing. (2)The static and dynamic photo-elastic materials were explored. The new formula and process of the dynamic photo-elastic model materials will be introduced. The silicon rubber mold was used without the release agent.
Technical Paper

Research on Shear Test of New Style Automotive Structural Adhesive

2014-04-01
2014-01-0828
In this paper, Digital Image Correlation Method (DICM) is employed to measure the shear mechanical property of the new style automotive structural adhesive specimens and traditional spot welded specimens under quasi static uniaxial shear tensile test. This experiment adopts a non-contact measuring method to measure the strain of specimens. A CCD and a computer image processing system are used to capture and record the real-time surface images of the specimens before and after deformation. Digital correlation software is used to process the imagines before and after deformation to obtain the specimen's strain of the moment. And then both the force-displacement curve and the stress-strain curve during the tensile process could be obtained. The test and analysis results show that the new style structural adhesive specimens have a great advantage with the spot welded specimens. It provides experimental evidence for further improvement of this structural adhesive.
Technical Paper

Three Failure Models for CFRP Composites

2021-04-06
2021-01-0310
Several failure criteria and stiffness degradation laws for composite materials are summarized and compared in terms of precision and convenience of use. The 2D/3D Hashin failure criteria are coupled with the stiffness degradation rules provided by Tan, Tserpes and Zinoviev. Three new failure models including 2D Hashin-Tan, 3D Hashin-Tser and 3D Hashin-Zin are presented for CFRP materials. The above three models were coded and incorporated into the ABAQUS software by user subroutines, among which model 2D Hashin-Tan and model 3D Hashin-Tser were programmed using the implicit algorithm VUSDFLD while model 3D Hashin-Zin was coded using the explicit algorithm VUMAT. Experiments of uniaxial tension and three-point bending were performed. A single element subjected to uniaxial tension and three-bending were simulated to check the function and precision of the new models.
Technical Paper

Research on the Fatigue Durability Performance of a SUV Rear Axle

2016-04-05
2016-01-0376
The performance of the rear axle plays an important role in the performance of vehicle, and its fatigue durability is an integral part in the vehicle development. Taking a SUV model as the research subject, a new methodology of multi-channel spindle coupled road simulator and fatigue simulation analysis for rear axle assembly was introduced in the paper, aiming to address the fatigue design and its verification for the rear axle in the development phase. Firstly, road loads in the proving ground was collected by arranging proper sensors. Secondly, physical iteration was performed on the multichannel spindle coupled road simulator by taking six component forces at the wheel hub as the target signals. Then, after the time waveform replication of the loads the durability test was conducted. Finally, the validated simulation model was successfully implemented to improve the fatigue life of the axle.
Journal Article

Influence Mechanism of Electromechanical Parameters on Transient Vibration of Electric Wheel System

2019-04-02
2019-01-0462
Electric wheel systems of in-wheel motor driven vehicles consist of the motor controller, in-wheel motor and tire-suspension assembly. The coupling between the electromagnetic excitation and elastic structure gives rise to electromechanical dynamic issues. As for the structural layout of the electric wheel system, the driving motor is directly connected to the wheel without torsion dampers or transmission in the driveline, thus making the electric wheel structure a weak damping system. Moreover, the driving torque of electric wheel can change rapidly in various conditions of vehicle. As a result, the transient vibration problem becomes one of the key electromechanical dynamic issues in the electric wheel system. To investigate this problem, the electromechanical coupling model of the electric wheel system is established first. Then the transient responses of the electric wheel under abrupt changes of the driving torque are simulated.
X