Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Refrigerant Charge Management and Control for Next-Generation Aircraft Vapor Compression Systems

2013-09-17
2013-01-2241
Vapor compression systems (VCS) offer significant benefits as the backbone for next generation aircraft thermal management systems (TMS). For a comparable lift, VCS offer higher system efficiencies, improved load temperature control, and lower transport losses than conventional air cycle systems. However, broad proliferation of VCS for many aircraft applications has been limited primarily due to maintenance and reliability concerns. In an attempt to address these and other VCS system control issues, the Air Force Research Laboratory has established a Vapor Cycle System Research Facility (VCSRF) to explore the practical application of dynamic VCS control methods for next-generation, military aircraft TMS. The total refrigerant mass contained within the closed refrigeration system (refrigerant charge) is a critical parameter to VCS operational readiness. Too much or too little refrigerant can be detrimental to system performance.
Technical Paper

In-situ Charge Determination for Vapor Cycle Systems in Aircraft

2012-10-22
2012-01-2187
The Air Force Research Laboratory (AFRL), in cooperation with the University of Dayton Research Institute (UDRI) and Fairchild Controls Corporation, is operating an in-house advanced vapor compression refrigeration cycle system (VCS) test rig known as ToTEMS (Two-Phase Thermal Energy Management System). This test rig is dedicated to the study and development of VCS control and operation in support of the Energy Optimized Aircraft (EOA) initiative and the Integrated Vehicle ENergy Technology (INVENT) program. Previous papers on ToTEMS have discussed the hardware setup and some of the preliminary data collected from the system, as well as the first steps towards developing an optimum-seeking control scheme. A key goal of the ToTEMS program is to reduce the risk associated with operating VCS in the dynamic aircraft environment.
Technical Paper

Cycle-Based Vapor Cycle System Control and Active Charge Management for Dynamic Airborne Applications

2014-09-16
2014-01-2224
Numerous previous studies have highlighted the potential efficiency improvements which can be provided to aircraft thermal management systems by the incorporation of vapor cycle systems (VCS), either in place of, or in conjunction with, standard air cycle systems, for providing the needed thermal management for aircraft equipment and crews. This paper summarizes the results of a cycle-based VCS control architecture as tested using the Vapor Cycle System Research Facility (VCSRF) in the Aerospace Systems Directorate of the Air Force Research Laboratory at Wright-Patterson Air Force Base. VCSRF is a flexible, dynamic, multi-evaporator VCS which incorporates electronic expansion valves and a variable speed compressor allowing the flexibility to test both components and control schemes. The goal of this facility is to reduce the risk of incorporating VCS into the thermal management systems (TMS) of future advanced aircraft.
X