Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study of Unmanned Supersonic Aircraft Configuration

2013-10-07
2013-36-0353
The aim of this work is to present the preliminary configuration design studies for an unmanned, lightweight (less than 15 kg), supersonic research aircraft. The studies comprise the aircraft typical mission, the aerodynamic and structural arrangement, preliminary performance, as well as mass distribution. The aircraft, an Unmanned Air Vehicle, or “UAV”, is named as Pohox (“arrow” in Maxakali indian language). It is intended to be the flying test bed for a multicycle engine capable to provide thrust in subsonic, transonic and supersonic regimes. In order to provide validation of the analysis tools, flight performance characteristics of a known, high speed aircraft - North American X-15 - have been also evaluated and compared with the available flight test data. The present analysis is an important step towards the aircraft detailed definition. And the features associated with the configuration obtained are good indications of the technical feasibility of this supersonic UAV.
Technical Paper

Study of Unmanned Supersonic Aircraft Configuration

2014-09-30
2014-36-0193
The aim of this work is to present the preliminary performance studies of the unmanned, lightweight (less than 10 kg), supersonic research aircraft. The studies comprise the typical mission for the aircraft's first supersonic version, based on the aerodynamic, thrust, and mass characteristics presented in a previous work. The aircraft, named as “Pohox”, is an Unmanned Air Vehicle, or “UAV”, and is intended to be the flying test bed for a multi cycle engine capable to provide thrust in subsonic, transonic and supersonic regimes. Different tools have been developed to perform the analysis. In the analysis, different flight paths are considered in order to provide insights in terms of fuel consumption, altitude and speed gain. Aircraft ‘excess power’ diagrams have been generated, to provide guidance for the definition of the flight paths to be analyzed. Drag dependency with Mach number is considered in the analysis.
X